Springer Series in Advanced Manufacturing
Series Editor

Professor D. T. Pham
Intelligent Systems Laboratory
WDA Centre of Enterprise in Manufacturing Engineering
University of Wales Cardiff
PO Box 688
Newport Road
Cardiff
CF2 3ET
UK

Other titles in this series

Assembly Line Design
B. Rekiek and A. Delchambre

Advances in Design
H.A. ElMaraghy and W.H. ElMaraghy (Eds.)

Effective Resource Management in Manufacturing Systems:
Optimization Algorithms in Production Planning
M. Caramia and P. Dell’Olmo

Condition Monitoring and Control for Intelligent Manufacturing
L. Wang and R.X. Gao (Eds.)

Optimal Production Planning for PCB Assembly
W. Ho and P. Ji

Trends in Supply Chain Design and Management: Technologies and Methodologies
Hosang Jung, F. Frank Chen and Bongju Jeong (Eds.)

Process Planning and Scheduling for Distributed Manufacturing
Lihui Wang and Weiming Shen (Eds.)
Collaborative Product Design and Manufacturing Methodologies and Applications
Preface

During the past few decades, there have been major innovation and paradigm shifts in product development methodologies and strategies. The current R&D trend is towards the development of collaborative design and manufacturing systems. The research theme is in line with the growing demand for global cooperative design and outsourcing in product development to gain better competitive advantage. Using the collaborative systems, designers and manufacturers can participate in global design chains and collaborate with partners locally and overseas to pursue competitive advantages. Furthermore, collaborative systems allow designers to work closely with suppliers, manufacturing partners and customers across enterprises’ firewalls to obtain valuable inputs for their design and manufacturing activities.

From the early 1990s, some major R&D works have been reported, including the CyberCut system by the University of California at Berkeley; the FIPER (Federated Intelligent Product EnviRonment) system (FIPER Project, www.fiperproject.com/fiperindex.htm) funded by NIST; the Web-DPR system by the Georgia Institute of Technology), etc. Commercial systems include SolidWorks eDrawing™, Autodesk Streamline™, Impactxoft IX Design™, Onespace™, SmarTeam™, PTC ProjectLink™ and Windchill™, UGS TeamCentre™, etc. However, the developed strategies, methodologies and solutions still fall short of the expectation of the practical needs. They have not been generally accepted due to the weaknesses and limitations in collaboration management, interactive capabilities, security of data, real-time and ease of collaboration, etc. Different culture, educational background, or design habit of people also make it difficult to organize optimal collaborative design and outsourcing activities. To address the issues and make collaborative engineering more realistic and applicable, more efforts are being made.

The aim of this book is to update the relevant and recent research and development in this field. In this book, thirteen original and innovative chapters have been included to address the major challenges of developing collaborative design and manufacturing systems and techniques, with scientific and rigorous foundations as well as application values. The covered topics include: collaborative methodologies and strategies between humans, and between systems and humans.
to facilitate collaborative design and manufacture; cooperation across domains for multi-disciplinary design and manufacture; distributed system and service architectures for collaborative design and manufacture; interoperability of collaborative systems; new feature- and assembly-based methodologies for facilitating collaborative design and manufacture; workflow and conflict resolution/management in collaborative design and manufacture; design process and design change management in collaborative development, etc.

This book can be used as reference for mechanical/manufacturing/computer engineering graduate students and researchers in the fields of concurrent engineering and collaborative engineering for the efficient utilization, deployment and development of collaborative product design and manufacturing.

During the development of this book, we have received invaluable input and support from the chapter authors. We are also grateful to the editors of Springer-Verlag for their patience and professionalism during the editing process.

W.D. Li (Cranfield University)
S.K. Ong (National University of Singapore)
A.Y.C. Nee (National University of Singapore)
C.A. McMahon (Bath University)

January 2007
1 An Adaptable Service-based Framework for Distributed Product Realization
Jitesh H. Panchal, Hae-Jin Choi, Janet K. Allen, David Rosen and Farrokh Mistree

1.1 Introduction ... 2
1.1.1 Need for an Adaptable Framework .. 3
1.1.2 An Open Engineering Systems Approach 3
1.2 Requirements and Features of an Adaptable Framework 4
1.3 Review of Capabilities Provided by Existing Frameworks 8
1.3.1 Web-based Systems ... 8
1.3.2 Agent-based Systems ... 10
1.3.2.1 Distributed Object-based Modeling and Evaluation (DOME).. 13
1.3.2.2 NetBuilder .. 13
1.3.3 Web-DPR ... 14
1.3.3.4 Federated Intelligent Product EnviRonment (FIPER).... 14
1.4 Motivating Example: Design of Linear Cellular Alloys (LCAs)............. 15
1.5 X-DPR (eXtensible Distributed Product Realization) Environment 17
1.5.1 Overview of X-DPR ... 17
1.5.2 Elements of the Framework ... 18
1.5.2.1 Data Repository .. 20
1.5.2.2 Process Diagram Tool ... 21
1.5.2.3 Dynamic UI Generation ... 23
1.5.2.4 Interface Mapping Tool .. 24
1.5.2.5 Messaging and Agent Description in X-DPR 26
1.5.2.6 Publishing a Service ... 26
1.5.2.7 Asset Search Service .. 26
1.5.3 Using the X-DPR framework for LCAs design 27
1.5.4 X-DPR as an Adaptable Framework ... 28
1.6 Conclusions ... 30
1.7 Acknowledgments ... 32
1.8 References ... 32

2 A Web-based Intelligent Collaborative System for Engineering Design
Xiaoqing (Frank) Liu, Samir Raorane and Ming C. Leu 37

2.1 Introduction ... 37
2.2 Related Work... 38
 2.2.1 Current State-of-the-art on Computer-aided Collaborative
 Engineering Design Systems .. 38
 2.2.2 Current State-of-the-art on Argumentation-based Conflict
 Resolution ... 39
2.3 A Web-based Intelligent Collaborative Engineering Design
 Environment and Its Application Scenarios... 40
2.4 Argumentation-based Conflict Resolution in the Collaborative
 Engineering Design Environment .. 40
 2.4.1 Structured Argumentation Through Dialog Graph 42
 2.4.2 Argument Reduction Through Fuzzy Inference........................... 43
 2.4.2.1 Linguistic Variable Through Fuzzy Membership
 Functions... 45
 2.4.2.2 Fuzzy Inference Rules.. 46
 2.4.2.3 Fuzzy System and Defuzzification................................. 47
 2.4.3 Structured Argumentation Through Dialog Graph 49
2.5 Design and Implementation ... 49
2.6 An Application Example.. 50
2.7 Conclusions .. 56
2.8 Acknowledgements.. 56
2.9 References ... 57

3 A Shared VE for Collaborative Product Development in
Manufacturing Enterprises
G. Chryssolouris, M. Pappas, V. Karabatsou, D. Mavrikios
and K. Alexopoulos ... 59

3.1 Introduction ... 59
3.2 Background ... 60
3.3 Building the Shared VE... 61
3.4 Virtual Environment Functionality .. 63
 3.4.1 Virtual Prototyping Function .. 63
 3.4.2 Behavioral Simulation Function ... 63
 3.4.3 Assembly Support Function .. 64
 3.4.4 Collision Detection Function .. 65
3.5 Pilot Application .. 65
3.6 Conclusions and Future Research .. 67
3.7 Acknowledgements.. 67
3.8 References ... 68
4 A ‘Plug-and-Play’ Computing Environment for an Extended Enterprise

F. Mervyn, A. Senthil Kumar and A. Y. C. Nee .. 71

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Related Research</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Application Development Framework</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1 Geometric Modeling Middleware Services</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1.1 Modeling Functions</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1.2 Geometric Data XML File</td>
<td>79</td>
</tr>
<tr>
<td>4.4.2.3 Application Relationship Manager (ARM)</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2 Process Data Exchange Middleware Services</td>
<td>83</td>
</tr>
<tr>
<td>4.3.3 Reusable Application Classes</td>
<td>84</td>
</tr>
<tr>
<td>4.4 Illustrative Case Study</td>
<td>84</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>89</td>
</tr>
<tr>
<td>4.6 References</td>
<td>90</td>
</tr>
</tbody>
</table>

5 Cooperative Design in Building Construction

Yuhua Luo ... 93

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>5.2 System Architecture and Components</td>
<td>95</td>
</tr>
<tr>
<td>5.2.1 The Cooperative 3D Editor</td>
<td>96</td>
</tr>
<tr>
<td>5.2.2 The Cooperative Support Platform</td>
<td>98</td>
</tr>
<tr>
<td>5.2.3 The Integrated Design Project Database</td>
<td>98</td>
</tr>
<tr>
<td>5.3 Considerations and Implementation for Collaborative Design</td>
<td>99</td>
</tr>
<tr>
<td>5.3.1 Interoperative and Multi-disciplinary</td>
<td>99</td>
</tr>
<tr>
<td>5.3.2 The On-line Cooperative Working</td>
<td>101</td>
</tr>
<tr>
<td>5.3.3 Design Error Detection During Integration</td>
<td>102</td>
</tr>
<tr>
<td>5.4 System Evaluation</td>
<td>103</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
<td>106</td>
</tr>
<tr>
<td>5.6 Acknowledgements</td>
<td>107</td>
</tr>
<tr>
<td>5.7 References</td>
<td>107</td>
</tr>
</tbody>
</table>

6 A Fine-grain and Feature-oriented Product Database for Collaborative Engineering

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>109</td>
</tr>
<tr>
<td>6.2 Generic Feature Model</td>
<td>112</td>
</tr>
<tr>
<td>6.2.1 Feature Shape Representation</td>
<td>113</td>
</tr>
<tr>
<td>6.2.2 Constraint Definition</td>
<td>113</td>
</tr>
<tr>
<td>6.2.3 Other Feature Properties</td>
<td>114</td>
</tr>
<tr>
<td>6.2.4 Member Functions</td>
<td>115</td>
</tr>
<tr>
<td>6.2.5 Application-specific Feature Model</td>
<td>116</td>
</tr>
<tr>
<td>6.3 Mapping Mechanisms</td>
<td>116</td>
</tr>
</tbody>
</table>
9 Real Time Distributed Shop Floor Scheduling: An Agent-Based Service-Oriented Framework

Chun Wang, Kewei Li, Hamada Ghenniwa, Weiming Shen and Ying Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>175</td>
</tr>
<tr>
<td>9.2 Scheduling Problems in Multiple Workcell Shop Floor</td>
<td>176</td>
</tr>
<tr>
<td>9.2.1 Workcell Scheduling Problem</td>
<td>177</td>
</tr>
<tr>
<td>9.2.2 Dynamic Scheduling Problem</td>
<td>179</td>
</tr>
<tr>
<td>9.2.3 Distributed Scheduling Problem</td>
<td>180</td>
</tr>
<tr>
<td>9.3 Scheduling Algorithms for Multiple Workcell Shop Floor</td>
<td>181</td>
</tr>
<tr>
<td>9.3.1 Workcell Scheduling Algorithm</td>
<td>182</td>
</tr>
<tr>
<td>9.3.2 Dynamic Scheduling Algorithm</td>
<td>183</td>
</tr>
<tr>
<td>9.3.3 Distributed Scheduling Algorithm</td>
<td>185</td>
</tr>
<tr>
<td>9.4 Agent-Based Service-Oriented System Integration</td>
<td>187</td>
</tr>
<tr>
<td>9.4.1 System Overview</td>
<td>188</td>
</tr>
<tr>
<td>9.4.2 Dynamic Scheduling Algorithm</td>
<td>189</td>
</tr>
<tr>
<td>9.4.3 Scheduler Agent Design</td>
<td>190</td>
</tr>
<tr>
<td>9.4.4 Coordination between Scheduler Agent and Real Time Controller Agent</td>
<td>191</td>
</tr>
<tr>
<td>9.4.5 Coordination between Scheduling Services</td>
<td>192</td>
</tr>
<tr>
<td>9.4.6 System Implementation</td>
<td>194</td>
</tr>
<tr>
<td>9.5 A Case Study</td>
<td>194</td>
</tr>
<tr>
<td>9.6 Conclusions</td>
<td>195</td>
</tr>
<tr>
<td>9.7 References</td>
<td>197</td>
</tr>
</tbody>
</table>

10 Leveraging Design Process Related Intellectual Capital – A Key to Enhancing Enterprise Agility

Jitesh H. Panchal, Marco Gero Fernández, Christiaan J. J. Paredis, Janet K. Allen and Farrokh Mistree

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Design Processes – An Enterprise’s Fundamental Intellectual Capital</td>
<td>202</td>
</tr>
<tr>
<td>10.2 Examples of Design Process Scenarios</td>
<td>204</td>
</tr>
<tr>
<td>10.2.1 Description of LCAs design problem</td>
<td>205</td>
</tr>
<tr>
<td>10.2.2 LCAs design process strategies</td>
<td>206</td>
</tr>
<tr>
<td>10.2.2.1 Strategy 1: Sequential Design – Thermal First</td>
<td>206</td>
</tr>
<tr>
<td>10.2.2.2 Strategy 2: Sequential Design – Structural First</td>
<td>207</td>
</tr>
<tr>
<td>10.2.2.3 Strategy 3: Set-based Design</td>
<td>207</td>
</tr>
</tbody>
</table>
10.2.2.4 Strategy 4: Use of Surrogate Models.. 207
10.2.2.5 Strategy 5: Parallel Iterative Design.. 208

10.3 Requirements and Critical Issues for Leveraging Design Process Related Intellectual Capital... 209
10.3.1 Support for Design Information Transformations.......................... 209
10.3.2 Support for Design Decision-making.. 210
10.3.3 Modeling and Representation of Design Processes....................... 210
10.3.4 Analyzing Design Processes... 211
10.3.5 Synthesizing Design Processes... 211

10.4 Research Issues and Strategies for Designing Design Processes........ 212
10.4.1 Modeling Design Processes.. 214
10.4.1.1 Research Issue... 214
10.4.1.2 Previous Work... 214
10.4.1.3 Research Questions... 214
10.4.1.4 Strategy: a Decision-centric Approach...................................... 214
10.4.2 Computational Representations for Design Processes.................. 216
10.4.2.1 Research Issue... 216
10.4.2.2 Previous Work... 216
10.4.2.3 Research Questions... 217
10.4.2.4 Strategy: Separating Declarative Information from Procedural Information... 217
10.4.3 Storage of Design Information.. 218
10.4.3.1 Research Issue... 218
10.4.3.2 Previous Work... 218
10.4.3.3 Research Questions... 219
10.4.3.4 Strategy: Process Templates.. 219
10.4.4 Developing metrics for assessing design processes..................... 220
10.4.4.1 Research Issue... 220
10.4.4.2 Previous Work... 221
10.4.4.3 Research Questions... 221
10.4.4.4 Strategy: Process Templates.. 221
10.4.5 Configuring Design Processes.. 222
10.4.5.1 Research Issue... 222
10.4.5.2 Previous Work... 222
10.4.5.3 Research Questions... 222
10.4.5.4 Strategy: Process Families... 223
10.4.6 Configuring Design Processes.. 223
10.4.6.1 Research Issue... 223
10.4.6.2 Previous Work... 224
10.4.6.3 Research Questions... 224
10.4.6.4 Strategy: Identifying Process Decisions..................................... 224
10.4.7 Integrating Design Processes with Other Processes in PLM.......... 225
10.4.7.1 Research Issue... 225
10.4.7.2 Previous Work... 225
10.4.7.3 Research Questions... 226
10.4.7.4 Strategy: a Decision-centric Approach...................................... 226

10.5 Conclusions... 227
11 Manufacturing Information Organization in Product Lifecycle Management
R. I. M. Young, A. G. Gunendran and A. F. Cutting-Decelle

11.1 Introduction ... 235
11.2 Information and Knowledge Infrastructures for Manufacture 236
11.3 Context Awareness: Its Significance for Information Organization 239
 11.3.1 Product Context .. 239
 11.3.2 Life Cycle Context ... 241
 11.3.3 Context Relationships ... 242
11.4 Exploiting Manufacturing Standards ... 246
 11.4.1 STEP for Manufacturing .. 246
 11.4.2 Mandate – Resource, Time And Flow Models 247
 11.4.3 Process Specification Language .. 248
11.5 Exploiting Product and Process Knowledge in Future 249
11.6 Conclusions ... 251
11.7 References ... 252

12 Semantic Interoperability to Support Collaborative Product Development
Q. Z. Yang and Y. Zhang

12.1 Introduction ... 255
12.2 Semantic Interoperability Concepts and Technologies 257
 12.2.1 Data-driven Interoperability Standard .. 258
 12.2.2 Ontologies ... 258
 12.2.3 Product Models .. 260
12.3 Product Semantics Capturing and STEP Extension Modeling 263
 12.3.1 Representing Semantics in Supplementary Information Models 263
 12.3.2 Embedding Supplementary Information in CAD Models 264
 12.3.3 Modeling STEP Extensions ... 265
 12.3.4 Capturing Semantics in STEP-compliant Product Models 266
12.4 Taxonomy and Ontology ... 267
 12.4.1 Vocabulary Taxonomy ... 267
 12.4.2 OWL Ontology ... 268
12.5 Semantics-driven Schema Mapping ... 270
12.6 Software Prototype Development .. 272
 12.6.1 Software System Architecture ... 272
 12.6.2 Client Toolkits .. 273
 12.6.3 Collaboration Server Components and Services 276
12.7 Collaboration Scenarios ... 278
 12.7.1 Support of Collaborative Design Process 278
 12.7.2 Design Objects Modeling and Semantics Capturing 279
12.7.3 Semantics Sharing with Heterogeneous Systems .. 281
12.8 Conclusions .. 283
12.9 Acknowledgements ... 284
12.10 Acronyms ... 284
12.11 References .. 284

13 A Proposal of Distributed Virtual Factory for Collaborative Production Management
Toshiya Kaihara, Susumu Fujii and Kentaro Sashio... 287

13.1 Introduction ... 287
13.2 Distributed Virtual Factory... 288
 13.2.1 Concept ... 288
 13.2.2 Structure ... 289
 13.2.3 Time Bucket Mechanism ... 289
13.3 Cost Analysis... 291
 13.3.1 Cost Analysis In Manufacturing Systems .. 291
 13.3.2 Activity Based Costing (ABC) .. 291
 13.3.3 DVF and ABC ... 292
 13.3.4 Manufacturing Model .. 292
 13.3.5 Formulations for Cost .. 292
13.4 Experimental Results... 297
 13.4.1 Simulation Model .. 297
 13.4.2 Total Factory Management in DVF ... 297
 13.4.3 Cost Analysys .. 300
13.5 Conclusions ... 301
13.6 References ... 303

Index... 305