Preface

Molecular Toxicology Protocols, Second Edition addresses a scientific field primed to explode upon the clinical and popular horizons. Toxicology, a subdiscipline of pharmacology, is actually the interface of chemistry and biology. This field also extends into nonchemical “agents” with deleterious biological effects, especially radiation, the purview of the radiobiologist and health physicist. With the huge increase in computational power now available over the last two decades, it has become possible to model and predict the potential toxicity of yet untested, and even unmade, chemicals. Perhaps, the greatest change in the recent practice of toxicology has been in applying the “tools of the trade” directly to the human population, in what are known “translational” studies, entering the realm of epidemiology. These studies expand the traditional public health aspect of toxicology from simple screening of agents for toxicological potential prior to their introduction into the environment to now include attempts to define “normal” or “background” exposures, elucidating the mechanistic basis of human disease and designing methods for preclinical intervention (“chemoprevention”).

Thus, for our purposes, we define “molecular” toxicology as either any study of toxicological mechanism, or any translation or application of such studies into the human population. Today, such “molecular” toxicology is mostly genetic toxicology, where the genetic material, DNA, is the target molecule. Of course DNA is found throughout the human body, such that all of the traditional modulators of toxicological effect, such as uptake, distribution, and metabolism, must be taken into account. Although genetic damage can have many outcomes, the one most clearly linking exposure and disease has been cancer.

During the past several years, important progress has been made in the understanding of the molecular biology of the cell, the cellular responses to genotoxic agents, and the molecular biology of human cancer. This progress has been rapidly achieved thanks to the development of new state-of-the-art techniques and continuous improvement of existing methods. Such advances permit not only the study changes of in cellular morphology but also the detection of changes occurring in the cellular genetic material (DNA), the cellular transcript (RNA), and the translated product (proteins). These molecular methods have now offered many potential areas of clinical applications. Therefore, following a successful publication of the first edition of *Molecular Toxicology Protocols* in 2005, this second volume contains several new chapters. Subjects of these new chapters range from preparation of fluid specimens for analysis of cellular inflammatory responses to genotoxic insults to sensitive methods for proteomic analysis and aberrant DNA methylation patterns.

Several books are currently available on the applications of molecular methods to various types of biotechnology. To our knowledge, however, there is no book emphasizing the application of molecular methods to genetic toxicology.

Therefore, the aim of *Molecular Toxicology Protocols* is to bring together a series of articles, each describing validated methods to elucidate specific molecular aspects of toxicology. With such content, this book addresses the needs of not only molecular biologists and toxicologists, but also all individuals interested in applying molecular methods to
clinical applications, including geneticists, pathologists, biochemists, and epidemiologists. The volume is divided into ten parts, roughly corresponding to the spectrum of biomarkers intermediate between exposure and disease outcomes as proposed in molecular epidemiology models.

Thus, Part I contains chapters describing methods to analyze global changes in protein expression and identify low-abundance proteins in cells and clinical samples, while the chapters in Part II describe methods for detecting cellular secretions in response to toxicant-induced inflammation. Part III describes methods for the analysis of an essential epigenetic modification, DNA methylation, which modulates gene expression and is frequently altered in toxicant-treated cells and clinical samples. Part IV addresses the application of the new array technologies to genetic toxicology, including methods for the analysis of individual variations in biotransformation and the effects of genetic exposure on gene expression. Part V includes chapters describing the sensitive and specific detection of pro-mutagenic lesions in the genetic material, while Part VI includes chapters assessing gross or macroscopic genetic damage. Parts VII and VIII focus on the detection and characterization of viable mutations in surrogate markers and cancer-related genes, respectively. The chapters of Part IX describe methods for the analyses of various pathways of DNA repair, an important modulator of genotoxicology. Finally, Part X describes methods for the analysis of cytotoxicity caused by the induction of apoptosis since cell death can either protect the organism from a transforming cell or cause distinct health effects itself.

As time goes by we believe that “molecular” approaches will play an increasingly important role in all types of toxicology, not just genetic toxicology. Moreover, genetic damage and dysfunction will undoubtedly be found to play a role in many more diseases of aging than just cancer and is probably a fundamental mechanism of aging itself. Therefore, the focus of this second edition, genetic toxicology, and more specifically, the genetic toxicology of cancer, represents just the “tip of the iceberg” as far as the field of molecular toxicology will eventually be understood.

Pittsburgh, PA, USA
Phouthone Keohavong
Fort Lauderdale, FL, USA
Stephen G. Grant
Contents

Preface ... v
Contributors ... xi

PART I TOXICOPROTEOMICS

1 Array-Based Immunoassays with Rolling-Circle Amplification Detection 3
 Katie Partyka, Shuangshuang Wang, Ping Zhao, Brian Cao, and Brian Haab

2 Analysis of Protein Changes Using Two-Dimensional Difference Gel Electrophoresis 17
 Weimin Gao

PART II TOXICANT-INDUCED INFLAMMATION

3 Assessment of Pathological and Physiological Changes in Mouse Lung Through Bronchoalveolar Lavage 33
 Yuanpu Peter Di

4 Analysis of Clinical and Biological Samples Using Microsphere-Based Multiplexing Luminex System 43
 Yingze Zhang, Rahel Birru, and Yuanpu Peter Di

PART III GENE PROMOTER METHYLATION

5 Detection of DNA Methylation by MeDIP and MBDCap Assays: An Overview of Techniques 61
 Hang-Kai Hsu, Yu-I Weng, Pei-Yin Hsu, Tim H.-M. Huang, and Yi-Wen Huang

6 Screening of DNA Methylation Changes by Methylation-Sensitive Random Amplified Polymorphic DNA-Polymerase Chain Reaction (MS-RAPD-PCR) 71
 Kamaleshwar P. Singh

PART IV ARRAY TECHNOLOGIES

7 Strategies for Measurement of Biotransformation Enzyme Gene Expression 85
 Marjorie Romkes and Shama C. Buch

8 Genotyping Technologies: Application to Biotransformation Enzyme Genetic Polymorphism Screening 99
 Marjorie Romkes and Shama C. Buch
9 TaqMan™ Fluorogenic Detection System to Analyze Gene Transcription in Autopsy Material 117
 Kaori Shintani-Ishida, Bao-Li Zhu, and Hitoshi Maeda

PART V ANALYSIS OF DNA ADDUCTS

10 32P-Postlabeling Analysis of DNA Adducts 127
 David H. Phillips and Volker M. Arlt

11 Modification of the 32P-Postlabeling Method to Detect a Single Adduct Species as a Single Spot.................. 139
 Masako Ochiai, Takashi Sugimura, and Minako Nagao

12 DNA Isolation and Sample Preparation for Quantification of Adduct Levels by Accelerator Mass Spectrometry 147

13 Analysis of DNA Strand Cleavage at Abasic Sites 159
 Walter A. Deutsch and Vijay Hegde

PART VI DETECTION OF CHROMOSOMAL AND GENOME-WIDE DAMAGE

14 Premature Chromosome Condensation in Human Resting Peripheral Blood Lymphocytes Without Mitogen Stimulation for Chromosome Aberration Analysis Using Specific Whole Chromosome DNA Hybridization Probes 171
 Rupak Pathak and Pataje G.S. Prasanna

15 Mutagen Sensitivity as Measured by Induced Chromatid Breakage as a Marker of Cancer Risk 183
 Xifeng Wu, Yun-Ling Zheng, and T.C. Hsu

16 Pulsed-Field Gel Electrophoresis Analysis of Multicellular DNA Double-Strand Break Damage and Repair 193
 Nina Joshi and Stephen G. Grant

PART VII DETECTION AND CHARACTERIZATION OF SURROGATE GENE MUTATION

17 Detection of Pig-a Mutant Erythrocytes in the Peripheral Blood of Rats and Mice ... 205
 Vasily N. Dobrovolsky, Xuefei Cao, Javed A. Bhalli, and Robert H. Heflich

18 The Blood-Based Glycophorin A (GPA) Human In Vivo Somatic Mutation Assay .. 223
 Nicole T. Myers and Stephen G. Grant

19 Flow Cytometric Quantification of Mutant T Cells with Altered Expression of the T-Cell Receptor: Detecting Somatic Mutants in Humans and Mice .. 245
 Seishi Kyoizumi, Yoichiro Kusunoki, and Tomonori Hayashi
20 Analysis of In Vivo Mutation in the Hprt and Tk Genes of Mouse Lymphocytes

Vasily N. Dobrovolsky, Joseph G. Shaddock, and Robert H. Heflich

21 Quantifying In Vivo Somatic Mutations Using Transgenic Mouse Model Systems

Roy R. Swiger

22 The Human T-Cell Cloning Assay: Identifying Genotypes Susceptible to Drug Toxicity and Somatic Mutation

Sai-Mei Hou

23 Molecular Analysis of Mutations in the Human HPRT Gene

Phouthone Keohavong, Liqiang Xi, and Stephen G. Grant

24 Simultaneous Quantification of t(14;18) and HPRT Exon 2/3 Deletions in Human Lymphocytes

James C. Fuscoe

PART VIII DETECTION AND CHARACTERIZATION OF CANCER GENE MUTATION

25 Mutation Screening of the TP53 Gene by Temporal Temperature Gel Electrophoresis (TTGE).

Therese Sørlie, Hilde Johnsen, Phuong Vu, Guro Elisabeth Lind, Ragnhild Lothe, and Anne-Lise Børresen-Dale

26 Detection of Point Mutations of K-ras Oncogene and p53 Tumor-Suppressor Gene in Sputum Samples

Weimin Gao and Phouthone Keohavong

27 ACB-PCR Quantification of Somatic Oncomutation

Meagan B. Myers, Page B. McKinzie, Yiying Wang, Fanxue Meng, and Barbara L. Parsons

28 Gel-Based Nonradioactive Single-Strand Conformational Polymorphism and Mutation Detection: Limitations and Solutions

Vibhuti Gupta, Reetaksbi Arora, Sailesh Gochhait, Narendra K. Bairwa, and Rameshwar N.K. Bamezai

29 Detection and Characterization of Oncogene Mutations in Preneoplastic and Early Neoplastic Lesions

Toshinari Minamoto

30 Detection of DNA Double-Strand Breaks and Chromosome Translocations Using Ligation-Mediated PCR and Inverse PCR

Sheetal Singh, Shyh-Jen Shib, and Andrew T.M. Vaughan

PART IX ANALYSIS OF DNA DAMAGE AND REPAIR MECHANISMS

31 Quantitative PCR-Based Measurement of Nuclear and Mitochondrial DNA Damage and Repair in Mammalian Cells

Amy Furda, Janine H. Santos, Joel N. Meyer, and Bennett Van Houten
32 The Sister Chromatid Exchange (SCE) Assay
Dawn M. Stults, Michael W. Killen, and Andrew J. Pierce

33 The Gene Cluster Instability (GCI) Assay for Recombination
Michael W. Killen, Dawn M. Stults, and Andrew J. Pierce

34 Measuring Recombination Proficiency in Mouse Embryonic Stem Cells
Andrew J. Pierce and Maria Jasin

35 Microsatellite Instability: An Indirect Assay to Detect Defects in the Cellular Mismatch Repair Machinery
Narendra K. Bairwa, Anjana Saha, Sailesh Gochhait, Ranjana Pal, Vibhuti Gupta, and Rameshwar N.K. Bamezai

36 Unscheduled DNA Synthesis: The Clinical and Functional Assay for Global Genomic DNA Nucleotide Excision Repair
Jean J. Latimer and Crystal M. Kelly

37 Analysis of Actively Transcribed DNA Repair Using a Transfection-Based System
Jean J. Latimer

38 An Immunohistoassay for Measuring Repair of UV Photoproducts
Shirley McCready

39 Analysis of Double-Strand Break Repair by Nonhomologous DNA End Joining in Cell-Free Extracts from Mammalian Cells
Petra Pfeiffer, Andrea Odersky, Wolfgang Goedecke, and Steffi Kuhfittig-Kulle

PART X ANALYSIS OF CELLULAR BIOENERGETICS AND APOPTOSIS

40 Bioenergetic Analysis of Intact Mammalian Cells Using the Seahorse XF24 Extracellular Flux Analyzer and a Luciferase ATP Assay
Michelle Barbi de Moura and Bennett Van Houten

41 Quantification of Selective Phosphatidylserine Oxidation During Apoptosis
James P. Fabisiak, Yulia Y. Tyurina, Vladimir A. Tyurin, and Valerian E. Kagan

42 Quantitative Method of Measuring Phosphatidylserine Externalization During Apoptosis Using Electron Paramagnetic Resonance (EPR) Spectroscopy and Annexin-Conjugated Iron
James P. Fabisiak, Grigory G. Borisenko, and Valerian E. Kagan

43 Detection of Programmed Cell Death in Cells Exposed to Genotoxic Agents Using a Caspase Activation Assay
Madhu Gupta, Madhumita Santra, and Patrick P. Koty

Index
Contributors

Volker M. Arlt • King’s College London, London, UK
Reetakshi Arora • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
Narendra K. Bairwa • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
Rameshwar N.K. Bamezai • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
Michelle Barbi de Moura • Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
Javed A. Bhalli • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
Rahel Birru • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Grigory G. Borisenko • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Anne-Lise Børresen-Dale • Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Shama C. Buch • Center for Clinical Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA
Brian Cao • Van Andel Research Institute, Grand Rapids, MI, USA
Xuefei Cao • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
Walter A. Deutsch • Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
Karen H. Dingley • Biology and Biotecnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA
Vasily N. Dobrovolsky • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
James P. Fabisiak • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Amy Furda • Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
James C. Fuscoe • Division of Systems Biology National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
Weimin Gao • Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA
Sailesh Gochhait • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
Wolfgang Gödecke • Institute of Genetics, University of Essen, Essen, Germany
Contributors

Stephen G. Grant • Public Health Program, Nova Southeastern University, Fort Lauderdale, FL, USA
Madhu Gupta • Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
Vibhuti Gupta • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
Brian Haab • Van Andel Research Institute, Grand Rapids, MI, USA
Kurt W. Haak • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA
Tomonori Hayashi • Laboratory of Immunology, Department of Radiobiology, Radiation Effects Research Foundation, Hiroshima, Japan
Robert H. Heflich • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
Vijay Hegde • Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
Sai-Mei Hou • Department of Biosciences, Karolinska Institute, Huddinge, Sweden
Bennett van Houten • Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
Hang-Kai Hsu • The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
Pei-Yin Hsu • The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
T. C. Hsu • Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX, USA
Tim H.-M. Huang • The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
Yi-Wen Huang • Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
Kaori Shintani-Ishida • Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
Maria Jasin • Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Cornell University Graduate School of Medical Sciences, New York, NY, USA
Hilde Johnsen • Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
Nina Joshi • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Valerian E. Kagan • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Crystal M. Kelly • Magee-Womens Research Institute, Pittsburgh, PA, USA
Phouthone Keohavong • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
Michael W. Killen • Markey Cancer Center, University of Kentucky, Lexington, KY, USA
Patrick P. Koty • Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
Steffi Kuhfittig-Kulle • Institute of Genetics, University of Essen, Essen, Germany
Kristen Kulp • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA
YOICHIRO KUSUNOKI • Laboratory of Immunology, Department of Radiobiology, Radiation Effects Research Foundation, Hiroshima, Japan

SEISHI KYOIZUMI • Laboratory of Immunology, Department of Radiobiology, Radiation Effects Research Foundation, Hiroshima, Japan

JEAN J. LATIMER • Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA

GURO ELISABETH LIND • Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, and Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway

RAGNHILD LOTHE • Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, and Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway

HITOSHI MAEDA • Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan

SHIRLEY MCCREADY • School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK

PAGE B. MCKINZIE • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

FANXUE MENG • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

JOEL N. MEYER • Nicholas School of the Environment, Duke University, Durham, NC, USA

TOSHINARI MINAMOTO • Divisions of Translational and Clinical Oncology and Surgical Oncology, Cancer Research Institute, Kanazawa University and Hospital, Kanazawa, Japan

MEAGAN B. MYERS • Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

NICOLE T. MYERS • Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA

MICHAEL A. MALFATTI • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy Lawrence Livermore National Laboratory CA, USA

MINAKO NAGAO • Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan

MASAKO OCHIAI • Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan

ANDREA ODERSKY • Institute of Genetics, University of Essen, Essen, Germany

TED J. OGNIBENE • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA

RANJANA PAL • National Centre for Human Genetics, Jawaharlal Nehru University, Delhi, India

BARBARA L. PARSONS • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

KATIE PARTYKA • Van Andel Research Institute, Grand Rapids, MI, USA

RUPAK PATHAK • Armed Forces Radiobiology Research Institute, Bethesda, MD, USA

PETRA PFEIFFER • Institute of Genetics, University of Essen, Essen, Germany

DAVID H. PHILLIPS • King’s College London, London, UK

ANDREW J. PIERCE • Markey Cancer Center, University of Kentucky, Lexington, KY, USA

PATAJE G.S. PRASANNA • Armed Forces Radiobiology Research Institute, Bethesda, MD, USA
Contributors

Marjorie Romkes • Division of Clinical Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA

Anjana Saha • National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India

Janine H. Santos • Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA; Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA

Madhumita Santra • Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Joseph G. Shadduck • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

Shyh-Jen Shih • Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, USA

Kamleshwar P. Singh • Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, USA

SHEETAL SINGH • Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, USA

Therese Sorlie • Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

Dawn M. Stults • Division of Hematology and Oncology, Department of Medicine, Vanderbilt University, Nashville, TN, USA

Takashi Sugimura • Biochemistry Division, National Cancer Center Research Institute, Tokyo, Japan

Roy R. Swiger • Midwest Research Institute, Palm Bay, FL, USA

Vladimir A. Tyurin • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA

Yuanpu Peter Di • Department of Environmental and Occupational Health University of Pittsburgh 100 Technology Drive, Bridgeside Point Pittsburgh PA, USA

Yulia Y. Tyurina • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA

Esther A. Ubick • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA

Andrew T.M. Vaughan • Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, USA

John S. Vogel • Biology and Biotechnology Research Program, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory, Livermore, CA, USA

Phuong Vu • Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway

Shuangshuang Wang • Van Andel Research Institute, Grand Rapids, MI, USA

Yiying Wang • Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR, USA

Yu-I Weng • The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA

Xifeng Wu • Department of Epidemiology, M.D. Anderson Cancer Center, Houston, TX, USA

Liqiang Xi • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
YINGZE ZHANG • Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
PING ZHAO • Van Andel Research Institute, Grand Rapids, MI, USA
YUN-LING ZHENG • Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
BAO-LI ZHU • Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan