Oxidative Stress in Applied Basic Research and Clinical Practice

Editor-in-Chief
Donald Armstrong

For further volumes:
http://www.springer.com/series/8145
Note from the Editor-in-Chief

All books in this series illustrate point-of-care testing and critically evaluate the potential of antioxidant supplementation in various medical disorders associated with oxidative stress. Future volumes will be updated as warranted by emerging new technology, or from studies reporting clinical trials.

Donald Armstrong
Editor-in-Chief
Preface

The current state of understanding the roles that oxidative and nitrosative/nitrative stress play in cellular metabolism of the retina as well as in diseases of the retina is the subject of this volume. The extreme complexity of the physiology of the retina in health and in disease has not yet been fully determined, but analysis of this complicated system has been accelerating. More mature is the analysis of the retinal physiology in the healthy retina due mainly to the physiologic similarity between humans and other animals. It is much easier and vastly less expensive to study in vitro systems and animal models than to study human subjects. To answer one prospective question to a desired degree of certainty in human disease treatment requires tens of millions of dollars and years of follow up. As a result, in vitro and animal model studies have advanced rapidly in the academic realm, while human studies lag behind, and are funded more and more by private enterprise whose principal aim is justifiably to secure government approval for a potential therapy. Because of this disparity between basic science and clinical research, there is necessarily an emphasis on basic science, but relevant clinical research is included.

The book begins with three chapters that review the etiologies of AMD, look at the direction of new treatment strategies, review the complement system in AMD, and explain oxidative stress in the pathology of AMD. Detailed explanations of oxygen stress in the lipid metabolism of the retina are given in Chaps. 4–8. Chapter 9 shows the relationship between the antioxidant system of glutathione and α-crystallins that explains the anti-apoptotic activity of the latter. The roles of the mitochondria and the endoplasmic reticulum in oxidative stress and retinal dysfunction are discussed in Chaps. 10 and 11.

The role of iron in retinal disease, the mechanisms of pathological VEGF expression, and the role of NAPDH oxidase are the subjects of Chaps. 12–14. Chapters 15–18 discuss the role of oxidative stress in oxidized lipoproteins, hepatocyte growth factor, the Ccl2−/−/Cx3cr1−/− mouse model of AMD, and the systemic changes in AMD. Cerium oxide nanoparticle reduction of oxidative stress in the retina is the topic of Chap. 19.
Chapters 20 and 25 discuss the role of progenitor cells in the cause and treatment of retinal disease including AMD and diabetes. An exhaustive look at natural compounds used in the prevention and treatment of retinal disease is given in Chap. 21. Chapter 22 discusses serotonin 5-HT$_{1A}$ receptor agonists in oxidative stress and retinal disease. Anti-VEGF treatment strategies for neovascular AMD are examined in Chaps. 23 and 24.

Nitric oxide and inducible nitric oxide synthase in retinal vascular disease are explored in Chap. 26. The effect of lipid hydroperoxide on circulating leukocytes was evaluated by an in vivo technique of acridine orange digital fluorography in Chap. 27. The role of oxidative stress in retinopathy of prematurity is discussed in Chap. 28. VEGF inhibitor-induced oxidative stress in retinal ganglion cells is examined in Chap. 29. With Chaps. 30 and 31, the book ends with a careful look at the role of carotenoids in retinal health and disease.

We thank our authors for their efforts to make this book a timely and thorough review of the advances in understanding the role of oxidative stress in health and disease of the retina. We are sure that readers will gain a better understanding of the pathophysiology and potential treatments of vascular and degenerative diseases of the retina, and hope readers will agree that the future looks bright with effective new treatments and new areas for exploration.

Gainesville, FL, USA
Gainesville, FL, USA
Ann Arbor, MI, USA

Robert D. Stratton
William W. Hauswirth
Thomas W. Gardner
Contents

1 Review of Emerging Treatments for Age-Related Macular Degeneration ... 1
 Marco A. Zarbin and Philip J. Rosenfeld

2 Complement Pathways and Oxidative Stress in Models of Age-Related Macular Degeneration ... 47
 Bärbel Rohrer, Mausumi Bandyopadhyay, Kannan Kunchithapautham, and Joshua M. Thurman

3 Oxidative Modifications as Triggers of AMD Pathology 65
 John W. Crabb

4 Role of Malondialdehyde in the Age-Related Macular Degeneration ... 85
 Hao Wang, Biren Zhao, Ivan Vrcek, John M. Johnston, and Yu-Guang He

5 Bisretinoid Lipofuscin in the Retinal Pigment Epithelium: Oxidative Processes and Disease Implications .. 95
 Janet R. Sparrow

6 Age-Related Changes in RPE Lipofuscin Lead to Hydrophobic Polymers ... 113
 L.S. Murdaugh, A.E. Dill, J. Dillon, J.D. Simon, and E.R. Gaillard

7 Docosahexaenoic Acid Signalolipidomics in the Homeostatic Modulation of Photoreceptor/Retinal Pigment Epithelial Cell Integrity During Oxidative Stress .. 141
 Nicolas G. Bazan and Anasheh Halabi
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Role of Photoreceptor Retinol Dehydrogenases in Detoxification of Lipid Oxidation Products</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Anisse Saadi, John D. Ash, Thierry N. Ngansop, Debra A. Thompson, and Anne Kasus-Jacobi</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Glutathione Metabolism and Its Contribution to Antiapoptotic Properties of α-Crystallins in the Retina</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Parameswaran G. Sreekumar, David R. Hinton, and Ram Kannan</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The Role of Mitochondrial Oxidative Stress in Retinal Dysfunction</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Stuart G. Jarrett, Alfred S. Lewin, and Michael E. Boulton</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Endoplasmic Reticulum Response to Oxidative Stress in RPE</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Guorui Dou, Ram Kannan, and David R. Hinton</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The Role of Iron in Retinal Diseases</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Sonia Mehta and Joshua L. Dunaief</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mechanisms of Pathological VEGF Production in the Retina and Modification with VEGF-Antagonists</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Alexa Klettner and Johann Roider</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NADPH Oxidase in Choroidal Neovascularization</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Qiuhong Li, Amrisha Verma, Astra Dinculescu, Alfred S. Lewin, and William W. Hauswirth</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Deposition and Oxidation of Lipoproteins in Bruch’s Membrane and Choriocapillaris Are “Age-Related” Risk Factors with Implications in Age-Related Macular Degeneration</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Ignacio R. Rodriguez</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hepatocyte Growth Factor Protection of Retinal Pigment Epithelial Cells</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Dan-Ning Hu, Joan E. Roberts, Richard Rosen, and Steven A. McCormick</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The Role of Oxidative Stress in the Retinal Lesion of Ccl2/Cx3cr1 Deficiency Mouse on rd8 Background</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Jingsheng Tuo</td>
<td></td>
</tr>
</tbody>
</table>
18 Oxidative Stress and Systemic Changes in Age-Related Macular Degeneration .. 367

19 Cerium Oxide Nanoparticle Reduction of Oxidative Damage in Retina ... 399
Xue Cai, Sudipta Seal, and James F. McGinnis

20 Transformation of Progenitor Cells for Treatment of Retinal Disease .. 419
Jeffrey R. Harris, Matthew B. Neu, Michael E. Boulton, and Maria B. Grant

21 Natural Compounds in Retinal Diseases .. 437
Man Yu, Robert E. Anderson, and Nawajes A. Mandal

22 Serotonin 5-HT \textsubscript{1A} Receptor Agonists in Oxidative Stress and Retinal Disease .. 457
Robert Collier, Glenn Noronha, and Carmelo Romano

23 Anti-VEGF Monotherapy Treatment Strategies for Neovascular AMD ... 479
Jaclyn L. Kovach, Stephen G. Schwartz, Harry W. Flynn Jr., and Ingrid U. Scott

24 Combination Treatment Strategies in Neovascular AMD 501
Stefan Scholl and Albert J. Augustin

25 Dysfunction of Circulating Endothelial Progenitor Cells in Diabetic Retinopathy ... 517
Bela Anand-Apte

26 Nitric Oxide Synthase in Retinal Vascular Diseases 529
Ermelindo C. Leal, António F. Ambrósio, and José Cunha-Vaz

27 Lipid Hydroperoxide Induced Leukocyte–Endothelium Interaction in the Retinal Microcirculation 545
Kazushi Tamai, Akihisa Matsubara, Kazuyuki Tomida, Yoshito Matsuda, Hiroshi Morita, Donald Armstrong, and Yuichiro Ogura

28 The Role of Reactive Oxygen Species and Oxidative Signaling in Retinopathy of Prematurity 559
Mary Elizabeth Hartnett and Margaret M. DeAngelis
29 VEGF Inhibitor Induced Oxidative Stress in Retinal Ganglion Cells .. 585
 Vikram S. Brar and K.V. Chalam

30 The Role of the Macular Carotenoids as a Blue Light Filter and an Antioxidant .. 595
 J.M. Nolan

31 Macular Pigment Carotenoids and Their Roles in Human Eye Health and Diseases 613
 Binxing Li and Paul S. Bernstein

Index .. 629

About the Authors .. 641
Contributors

António F. Ambrósio Centre of Ophthalmology and Vision Sciences, Institute of Biomedical Research in Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Bela Anand-Apte Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA

Robert E. Anderson Departments of Ophthalmology and Cell Biology, Oklahoma City, OK, USA

McGee Eye Institute, Oklahoma City, OK, USA

Donald Armstrong Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA

John D. Ash Department of Ophthalmology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA

Albert J. Augustin Department of Ophthalmology, Klinikum Karlsruhe, Karlsruhe, Germany

Mausumi Bandyopadhyay Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA

Nicolas G. Bazan Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA

Paul S. Bernstein Department of Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, Salt Lake City, UT, USA

Michael E. Boulton Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
Milam A. Brantley Jr. Vanderbilt Eye Institute, Vanderbilt University, Nashville, TN, USA

Vikram S. Brar Department of Ophthalmology, University of Florida, College of Medicine, Jacksonville, FL, USA

Jiyang Cai Vanderbilt Eye Institute, Vanderbilt University, Nashville, TN, USA

Xue Cai Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

K.V. Chalam Department of Ophthalmology, University of Florida, College of Medicine, Jacksonville, FL, USA

Robert Collier Retina Research Alcon Laboratories, Inc., Fort Worth, TX, USA

John W. Crabb Departments of Ophthalmology and Molecular Medicine, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA

José Cunha-Vaz Department of Ophthalmology, Faculty of Medicine, University of Coimbra, Association for Innovation and Biomedical Research on Light and Image (AIBILI), Azinhaga Santa Comba, Coimbra, Portugal

Margaret M. DeAngelis Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA

A.E. Dill GreatPoint Energy, Chicago, IL, USA

J. Dillon Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
Department of Ophthalmology, Columbia University, New York, NY, USA

Astra Dinculescu Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA

Guorui Dou Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China

Joshua L. Dunaief F. M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA

Harry W. Flynn Jr. Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA

E.R. Gaillard Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA
Department of Ophthalmology, Columbia University, New York, NY, USA

Thomas W. Gardner Ophthalmology and Visual Sciences and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
Maria B. Grant Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA

Anasheh Halabi Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA

Jeffrey R. Harris Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA

Mary Elizabeth Hartnett Departments of Ophthalmology and Pediatrics, Moran Eye Center, University of Utah, Salt Lake City, UT, USA

William W. Hauswirth Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA

Yu-Guang He Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

David R. Hinton Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA

Dan-Ning Hu Tissue Culture Center, The New York Eye and Ear Infirmary, New York, NY, USA

Department of Ophthalmology, New York Medical College, New York, NY, USA

Stuart G. Jarrett Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA

John M. Johnston Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Ram Kannan Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA

Anne Kasus-Jacobi Department of Ophthalmology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA

Alexa Klettner Department of Ophthalmology, University of Kiel, University Medical Center, Kiel, Germany

Jaclyn L. Kovach Department of Clinical Ophthalmology, University of Miami, Miller School of Medicine, Bascom Palmer Eye Institute, Miami, FL, USA

Kannan Kunchithapautham Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA

Ermelindo C. Leal Centre of Ophthalmology and Vision Sciences Institute of Biomedical Research in Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
Alfred S. Lewin Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA

Binxing Li Department of Ophthalmology and Visual Sciences, University of Utah, Moran Eye Center, School of Medicine, Salt Lake City, UT, USA

Qiuhong Li Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA

Nawajes A. Mandal Department of Ophthalmology, Oklahoma City, OK, USA
McGee Eye Institute, Oklahoma City, OK, USA

Akihisa Matsubara Department of Ophthalmology and Visual Science, Nagoya City University, Graduate School of Medical, Nagoya, Japan

Yoshito Matsuda Department of Ophthalmology and Visual Science, Nagoya City University Medical School, Nagoya, Japan

Steven A. McCormick Department of Pathology and Laboratory Medicine, The New York Eye and Ear Infirmary, New York, NY, USA
Department of Pathology, Ophthalmology and Otolaryngology, New York Medical College, New York, NY, USA

James F. McGinnis Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
Neuroscience Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Sonia Mehta Duke Eye Center, Duke University School of Medicine, Durham, NC, USA

Hiroshi Morita Department of Ophthalmology and Visual Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan

L.S. Murdaugh Department of Chemistry and Biochemistry, Northern Illinois University, Dekalb, IL, USA

Matthew B. Neu Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA

Thierry N. Ngansop Department of Ophthalmology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA

John M. Nolan Macular Pigment Research Group, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland

Glenn Noronha Retina Research Alcon Laboratories, Inc., Fort Worth, TX, USA
Yuichiro Ogura Department of Ophthalmology and Visual Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan

Melissa P. Osborn Vanderbilt Eye Institute, Vanderbilt University, Nashville, TN, USA

Joan E. Roberts Department of Chemistry, Division of Natural Sciences, Fordham University, New York, NY, USA

Ignacio R. Rodriguez Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD, USA

Bärbel Rohrer Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA

Johann Roider Department of Ophthalmology, University of Kiel, University Medical Center, Kiel, Germany

Carmelo Romano Retina Research Alcon Laboratories, Inc., Fort Worth, TX, USA

Richard Rosen Department of Ophthalmology, Ophthalmology Research, New York Eye and Ear Infirmary, New York Medical College, New York, NY, USA

Philip J. Rosenfeld Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA

Anisse Saadi Department of Ophthalmology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA

Stefan Scholl Department of Ophthalmology, Klinikum Karlsruhe, Karlsruhe, Germany

Retina Research Institute, Baden-Baden, Germany

Stephen G. Schwartz Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA

Ingrid U. Scott Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USA

Penn State University, Penn State Hershey Eye Center, Hershey, PA, USA

Sudipta Seal Advanced Materials Processing Analysis Center, Nanoscience Technology Center, Mechanical Materials Aerospace Eng, University of Central Florida, Orlando, FL, USA

J.D. Simon Department of Chemistry, Duke University, Durham, NC, USA

Janet R. Sparrow Department of Ophthalmology, Columbia University, New York, NY, USA

Parameswaran G. Sreekumar Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, University of Southern California, Los Angeles, CA, USA
Paul Sternberg Jr. Vanderbilt Eye Institute, Vanderbilt University, Nashville, TN, USA

Robert D. Stratton Department of Ophthalmology, University of Florida, Gainesville, FL, USA
Division of Small Animal Clinical Sciences, School of Veterinary Medicine, University of Florida, Gainesville, FL, USA

Kazushi Tamai Department of Ophthalmology and Visual Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan

Debra A. Thompson Departments of Ophthalmology and Visual Sciences, and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA

Joshua M. Thurman Department of Medicine, University of Colorado Denver School of Medicine, Denver, CO, USA

Kazuyuki Tomida Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan

Jingsheng Tuo Laboratory of Immunology, National Eye Institute, Bethesda, MD, USA

Amrisha Verma Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, USA

Ivan Vrcek Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Hao Wang Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Man Yu Department of Ophthalmology, Oklahoma City, OK, USA
McGee Eye Institute, Oklahoma City, OK, USA
Ophthalmic Laboratories and Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Marco A. Zarbin Institute of Ophthalmology and Visual Science, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA

Biren Zhao Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA