Metabolic Profiling

Methods and Protocols

Edited by

Thomas O. Metz

Biological Sciences Division, Pacific Northwest National Laboratory,
Richland, WA, USA

Humana Press
Preface

After accepting the task to edit a volume of Methods in Molecular Biology devoted to metabolic profiling, I began to contemplate the definition of the term. Fiehn referred to “metabolic profiling” as the identification and quantification of a select number of metabolites in an entire metabolic pathway or intersecting pathways (1). Closely related disciplines were targeted metabolite analysis, metabolic fingerprinting, and metabolomics, the latter of which was defined as the quantitative measurement of perturbations in the metabolite complement of a biological system (2). These four terms are often used interchangeably; indeed, in reviewing the literature over the past 40 years, it is evident that these various disciplines of metabolite analysis are related via an evolution of methods and technology. For example, while the field of metabolomics is now 10 years old, the protocols and instrumentation that form the foundation for the myriad approaches of this discipline are based on those originally established for the diagnosis of inborn errors of metabolism and drug metabolite analysis. Thus, in compiling this volume, I have made an attempt to incorporate protocols that are illustrative of the evolution of metabolic profiling from single molecule analysis to global metabolome profiling. The constraints of this volume necessitate that its contents will be perspective based, rather than comprehensive. However, it is my hope that the methods contained herein will be a resource for both established and new investigators in the field of metabolic profiling.

Thomas O. Metz

References

Contents

Preface .. v
Contributors ix

1. Origins of Metabolic Profiling 1
 Arthur B. Robinson and Noah E. Robinson

2. Amino Acid Profiling for the Diagnosis of Inborn Errors of Metabolism 25
 Monique Piraud, Séverine Ruet, Sylvie Bayer, Cécile Acquaviva,
 Pascale Clerc-Renaud, David Cheillan, and Christine Vianey-Saban

3. Acylcarnitines: Analysis in Plasma and Whole Blood Using Tandem Mass
 Spectrometry 55
 David S. Millington and Robert D. Stevens

4. Analysis of Organic Acids and Acylglycines for the Diagnosis of Related
 Inborn Errors of Metabolism by GC- and HPLC-MS 73
 Giancarlo la Marca and Cristiano Rizzo

5. HPLC Analysis for the Clinical–Biochemical Diagnosis of Inborn Errors
 of Metabolism of Purines and Pyrimidines 99
 Giuseppe Lazzarino, Angela Maria Amorini, Valentina Di Pietro,
 and Barbara Tavazzi

6. Bile Acid Analysis in Various Biological Samples Using Ultra
 Performance Liquid Chromatography/Electrospray Ionization-Mass
 Spectrometry (UPLC/ESI-MS) 119
 Masahito Hagio, Megumi Matsumoto, and Satoshi Ishizuka

7. Analysis of Glycolytic Intermediates with Ion Chromatography- and Gas
 Chromatography-Mass Spectrometry 131
 Jan C. van Dam, Cor Ras, and Angela ten Pierick

8. Analysis of the Citric Acid Cycle Intermediates Using Gas
 Chromatography-Mass Spectrometry 147
 Rajan S. Kombu, Henri Brunengraber, and Michelle A. Puchowicz

9. Quantification of Pentose Phosphate Pathway (PPP) Metabolites
 by Liquid Chromatography-Mass Spectrometry (LC-MS) 159
 Amber Jannasch, Miroslav Sedlak, and Jiri Adamec

10. High-Performance Liquid Chromatography-Mass Spectrometry
 (HPLC-MS)-Based Drug Metabolite Profiling 173
 Ian D. Wilson
11. Gas Chromatography-Mass Spectrometry (GC-MS)-Based Metabolomics 191
 Antonia Garcia and Coral Barbas

12. The Use of Two-Dimensional Gas Chromatography–Time-of-Flight
 Mass Spectrometry (GC×GC–TOF-MS) for Metabolomic Analysis
 of Polar Metabolites 205
 Kimberly Ralston-Hooper, Amber Jannasch, Jiri Adamec,
 and Maria Sepúlveda

13. LC-MS-Based Metabolomics .. 213
 Sunil Bajad and Vladimir Shulaev

 (CE–ESI-MS)-Based Metabolomics 229
 Philip Britz-McKibbin

15. Liquid Chromatography-Mass Spectrometry (LC-MS)-Based Lipidomics
 for Studies of Body Fluids and Tissues 247
 Heli Nygren, Tuulikki Seppänen-Laakso, Sandra Castillo,
 Tuulia Hyötyläinen, and Matej Orešič

16. Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)-
 Based Shotgun Lipidomics 259
 Giorgis Isaac

17. Processing and Analysis of GC/LC-MS-Based Metabolomics Data 277
 Elizabeth Want and Perrine Masson

18. Nuclear Magnetic Resonance (NMR)-Based Drug Metabolite Profiling 299
 Eva M. Lenz

19. Nuclear Magnetic Resonance (NMR)-Based Metabolomics 321
 Hector C. Keun and Toby J. Athersuch

20. Slow Magic Angle Sample Spinning: A Non- or Minimally Invasive
 Method for High-Resolution 1H Nuclear Magnetic Resonance (NMR)
 Metabolic Profiling ... 335
 Jian Zhi Hu

21. Processing and Modeling of Nuclear Magnetic Resonance (NMR)
 Metabolic Profiles .. 365
 Timothy M.D. Ebbels, John C. Lindon, and Muireann Coen

Subject Index . 389
Contributors

CÉCILE ACQUAVIVA • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
JIRI ADAMEC • Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
ANGELA MARIA AMORINI • Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
TOBY J. ATHERSUCH • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, UK
SUNIL BAJAD • Sutro Biopharma Inc., South San Francisco, CA, USA
CORAL BARBAS • Faculty of Pharmacy, San Pablo-CEU, Campus Monteprincipe, Madrid, Spain
SYLVIE BOYER • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
PHILIP BRITZ-MCKIBBIN • Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
HENRI BRUNENGRABER • Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, OH, USA
SANDRA CASTILLO • VTT Technical Research Centre of Finland, Espoo, Finland
DAVID CHEILLAN • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
PASCAL CLERC-RENAUD • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
MIAREANN COEN • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
VALENTINA DI PIETRO • Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
TIMOTHY M.D. EBBELS • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
ANTONIA GARCIA • Faculty of Pharmacy, San Pablo-CEU, Campus Monteprincipe, Madrid, Spain
MASAHITO HAGIO • Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
JIAN ZHI HU • Pacific Northwest National Laboratory, Richland, WA, USA
TUULIA HYÖTLÄINEN • VTT Technical Research Centre of Finland, Espoo, Finland
GIORGIS ISAAC • Bio Separation and Mass Spectrometry, Pacific Northwest National Laboratory, Richland, WA, USA; Water corporation, Mulford, MA
SATOSHI ISHIZUKA • Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
AMBER JANNASCH • Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
HECTOR C. KEUN • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, UK
Rajan S. Kombu • Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, OH, USA
Giuseppe Lazzarino • Division of Biochemistry and Molecular Biology, Department of Chemical Sciences, University of Catania, Catania, Italy
Eva M. Lenz • AstraZeneca Pharmaceuticals, Mereside, Macclesfield, UK
John C. Lindon • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
Giancarlo La Marca • Mass Spectrometry, Clinical Chemistry and Pharmacology Laboratory, Department of Pharmacology, University of Florence, Meyer Children’s Hospital, Florence, Italy
Perrine Masson • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
Megumi Matsumoto • Meiji Dairies Research Chair, Creative Research Institution Sosei (CRIS), Hokkaido University, Sapporo, Japan
David S. Millington • DUMC Biochemical Genetics Laboratory, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
Helin Nygren • VTT Technical Research Centre of Finland, Espoo, Finland
Matej Orešić • VTT Technical Research Centre of Finland, Espoo, Finland
Monique Piraud • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
Michelle A. Puchowicz • Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, OH, USA
Kimberly Ralston-Hooper • Ecosystem Research Division, National Research Council Post-Doctoral Fellow, United States Environmental Protection Agency, Athens, GA, USA
Cor Ras • Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
Cristiano Rizzo • Metabolic Unit and Laboratories, Bambino Gesù Children’s Hospital, Rome, Italy
Arthur B. Robinson • Oregon Institute of Science and Medicine, Oregon, OR, USA
Noah E. Robinson • Oregon Institute of Science and Medicine, Oregon, OR, USA
Séverine Ruet • Laboratoire des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France
Miroslav Sedlak • Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
Tuulikki Seppänen-Laakso • VTT Technical Research Centre of Finland, Espoo, Finland
Maria Sepúlveda • Department of Natural Resources, Purdue University, West Lafayette, IN, USA
Vladimir Shulaev • Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Robert D. Stevens • Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
Barbara Tavazzi • Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
ANGELA TEN PIERICK • Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

JAN C. VAN DAM • Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

CHRISTINE VIANEY-SABAN • Laboratoire des Maladies Héréditaires du Métabolisme et Détectage Néonatal, Hospices Civils de Lyon, Centre de Biologie Est, Bron, France

ELIZABETH WANT • Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK

IAN D. WILSON • AstraZeneca, Macclesfield, UK