Mesenchymal Stem Cell Assays and Applications

Edited by
Mohan C. Vemuri

Stem Cells and Regenerative Medicine, Life Technologies, Frederick, MD, USA

Lucas G. Chase

Cellular Dynamics International, Inc., Madison, WI, USA

Mahendra S. Rao

Stem Cells and Regenerative Medicine, Life Technologies, Frederick, MD, USA

Humana Press
Mesenchymal stem cells (marrow-derived stromal cells – MSC) were first harvested from the marrow well over two decades ago and were shown to likely play diverse functions in vitro and in vivo. MSC are thought to contribute to the stem cell niche in the marrow; contribute to smooth muscle, adipocyte, bone and cartilage development and repair; and in general contribute to the parenchyma of the most tissues and organs. MSC or MSC-like cells can therefore be isolated from a variety of tissues, and while subtle differences between these populations have been identified, their properties seem similar and different researchers have used different subpopulations of MSC and tested their efficacy in a variety of diverse models of disease.

This (MSC) class of somatic (adult) stem cells has seen an unprecedented level of interest in the last decade. They are the only stem cell type that has two annual meetings devoted solely to it and the only cell type that has spawned over a dozen companies and whose therapeutic efficacy is being tested in over 90 clinical trials. Perhaps the reason for this level of activity is the relative ease of isolation, the large numbers of cells present in the adult, and the ability to propagate these cells in culture (in contrast to hematopoietic stem cells or cord blood-derived hematopoietic stem cells).

Surprisingly, despite this level of activity, there is little consensus on the exact lineage of this population of cells and which set of markers defines these cells in vitro and in vivo. Given this ambiguity, we felt there was a need to compile a set of protocols and assays used by the leading investigators in this field that would enable others to standardize the population of cells they used in their experiments.

The end result of this effort is 35 chapters from leading experts from all over the world who have graciously shared their experience to describe how to isolate, propagate, characterize, and manipulate this special cell type. We hope the researchers will find the information in this book as useful as we and our laboratory groups have found it to be.
Contents

Preface. ... v
Contributors. ... xi

PART I INTRODUCTION

1 Mesenchymal Stem Cell Assays and Applications. 3
 Mohan C. Vemuri, Lucas G. Chase, and Mahendra S. Rao

PART II ISOLATION AND EXPANSION OF MSCS FROM VARIOUS SOURCES

2 Isolation and Expansion of Mesenchymal Stem Cells/Multipotential
 Stromal Cells from Human Bone Marrow. 11
 Patrice Penfornis and Radhika Pochampally

3 Standardized Isolation of Human Mesenchymal Stromal Cells
 with Red Blood Cell Lysis ... 23
 Patrick Horn, Simone Bork, and Wolfgang Wagner

4 Isolation and Growth of Adipose Tissue-Derived Stem Cells 37
 Vladimir Zachar, Jeppe Grøndahl Rasmussen, and Trine Fink

5 Isolation, Culture, and Characterization of Human Umbilical
 Cord Stromata-derived Mesenchymal Stem Cells 51
 Alp Can and Deniz Balci

6 The Isolation and Culture of Human Cord Blood-Derived
 Mesenchymal Stem Cells Under Low Oxygen Conditions 63
 Anita Laitinen, Johanna Nystedt, and Saara Laitinen

7 Amniotic and Placental Mesenchymal Stem Cell Isolation and Culture ... 75
 Justin D. Klein and Dario O. Fauza

8 Manufacture of Clinical Grade Human Placenta-Derived
 Multipotent Mesenchymal Stromal Cells 89
 Nina Ilic, Gary Brooke, Patricia Murray, Sarah Barlow, Tony Rossetti,
 Rebecca Pelekano, Sonia Hancock, and Kerry Atkinson

9 A Method to Isolate and Culture Expand Human Dental Pulp Stem Cells 107
 Stan Gronthos, Agnieszka Arthur, P. Mark Bartold, and Songtao Shi

10 Isolation and Culture of Human Multipotent Stromal Cells
 from the Pancreas ... 123
 Karen L. Seeberger, Alana Eshpeter, and Gregory S. Korbutt

11 Derivation and Characterization of Human ESC-Derived
 Mesenchymal Stem Cells. .. 141
 Ruenn Chai Lai, Andre Choo, and Sai Kiang Lim

12 Isolation and Culture of Rodent Bone Marrow-Derived Multipotent
 Mesenchymal Stromal Cells ... 151
 Nance Beyer Nardi and Melissa Camasola
13 Cryopreservation and Revival of Mesenchymal Stromal Cells 161
 Mandana Haack-Sørensen and Jens Kastrup
14 Dynamic Expansion Culture for Mesenchymal Stem Cells. 175
 Hicham Majd, Thomas M. Quinn, Pierre-Jean Wipff, and Boris Hinz
15 Ex Vivo Expansion of Human Mesenchymal Stromal Cells on Microcarriers 189
 Francisco dos Santos, Pedro Z. Andrade, Gemma Eibes,
 Cláudia Lobato da Silva, and Joaquim M. S. Cabral

PART III MSC LINEAGE DIFFERENTIATION AND ANALYSIS

16 Osteogenic Differentiation of Human Multipotent Mesenchymal Stromal Cells .. 201
 Deepak M. Gupta, Nicholas J. Panetta, and Michael T. Longaker
17 Assays of Osteogenic Differentiation by Cultured Human Mesenchymal Stem Cells. .. 215
 Ulf Krause, Anja Seckinger, and Carl A. Gregory
18 Bioreactor Cultivation of Functional Bone Grafts 231
 Warren L. Grayson, Sarindr Bhumiratana, Christopher Cannizzaro,
 and Gordana Vunjak-Novakovic
19 Adipogenic Differentiation of Human Mesenchymal Stem Cells 243
 Trine Fink and Vladimir Zachar
20 Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Tips and Tricks 253
 Luis A. Solchaga, Kitsie J. Penick, and Jean F. Welter
21 Use of Human Mesenchymal Stem Cells as Alternative Source of Smooth Muscle Cells in Vessel Engineering 279
 Zhaodi Gong and Laura E. Niklason
22 Dopaminergic Neuronal Differentiation Protocol for Human Mesenchymal Stem Cells .. 295
 Katarzyna A. Trzaska and Pranela Rameshwar
23 Hepatic Differentiation of Mesenchymal Stem Cells: In Vitro Strategies 305
 Sarah Snykers, Joery De Kock, Vanhaecke Tamara, and Vera Rogiers
24 Hepatic Transplantation of Mesenchymal Stem Cells in Rodent Animal Models 315
 Bruno Christ, Sandra Brückner, and Peggy Stock
25 Phenotypic Analysis and Differentiation of Murine Mesenchymal Stem Cells .. 331
 Lindolfo da Silva Meirelles and Dimas Tadeu Covas

PART IV MSC PHENOTYPIC CHARACTERIZATION AND EXTENDED APPLICATIONS

26 Immunohistochemical Analysis of Human Mesenchymal Stem Cells Differentiating into Chondrogenic, Osteogenic, and Adipogenic Lineages 353
 Zheng Yang, Jacqueline Frida Schmitt, and Eng Hin Lee
27 Panel Development for Multicolor Flow-Cytometry Testing of Proliferation and Immunophenotype in hMSCs 367
 Jolene A. Bradford and Scott T. Clarke
28 Simplified PCR Assay for Detecting Early Stages of Multipotent Mesenchymal Stromal Cell Differentiation .. 387
 Shayne E. Boucher

29 Transcriptome Analysis of Common Gene Expression in Human Mesenchymal Stem Cells Derived from Four Different Origins 405
 Tzu-Hao Wang, Yun-Shien Lee, and Shiaw-Min Hwang

30 Comparison of Microarray and Quantitative Real-Time PCR Methods for Measuring MicroRNA Levels in MSC Cultures 419
 Cynthia Camarillo, Mavis Swerdel, and Ronald P. Hart

31 Two Dimensional Gel Electrophoresis Analysis of Mesenchymal Stem Cells ... 431
 Monique Provansal, Christian Jorgensen, Sylvain Lehmann, and Stéphane Roche

32 Proteomic Analysis of Human Mesenchymal Stem Cells 443
 Guo Li, Chu-yan Chan, Hua Wang, and Hsiang-fu Kung

33 Metabolic Labeling and Click Chemistry Detection of Glycoprotein Markers of Mesenchymal Stem Cell Differentiation 459
 Courtenay Hart, Lucas G. Chase, Mahbod Hajivandi, and Brian Agnew

34 BacMam-Mediated Gene Delivery into Multipotent Mesenchymal Stromal Cells ... 485
 Michael O’Grady, Robert H. Batchelor, Kelly Scheybing, Christopher W. Kemp, George T. Hanson, and Uma Lakshmipathy

35 Cell Surface Engineering of Mesenchymal Stem Cells 505
 Debanjan Sarkar, Weian Zhao, Ashish Gupta, Wei Li Loh, Rohit Karnik, and Jeffrey M. Karp

Index ... 525
Contributors

BRIAN AGNEW • Life Technologies, Eugene, OR, USA

PEDRO Z. ANDRADE • IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal

AGNIESZKA ARTHUR • Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/CSCR, University of Adelaide, Adelaide, SA, Australia

KERRY ATKINSON • Mater Health Services, Brisbane, Queensland 4101, Australia; Mater Medical Research Institute, Brisbane, Queensland 4101, Australia; University of Queensland, Brisbane, Queensland 4072, Australia

DENIZ BALCI • Ankara University Biotechnology Institute, Ankara, Turkey

SARAH BARLOW • Mater Medical Research Institute, Brisbane, Queensland, Australia

P. MARK BARTOLD • Colgate Australian Clinical Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia

ROBERT H. BATELELOR • Primary and Stem Cell Systems, Life Technologies, Eugene, OR, USA

SARINDR BHUMIRITANA • Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, NY, USA

SIMONE BORK • Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany; Department of Medicine V, University of Heidelberg, Heidelberg, Germany

SHAYNE E. BOUCHER • Life Technologies, Frederick, MD, USA

JOLENE A. BRADFORD • Life Technologies, Eugene, OR, USA

GARY BROOKE • Mater Medical Research Institute, Brisbane, Queensland, Australia

SANDRA BRUCKNER • First Department of Medicine, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany

JOAQUIM M. S. CABRAL • IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal

CYNTHIA CAMARILLO • Rutgers Stem Cell Research Center and W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA

MELISSA CAMASSOLA • Programa de Pós-Graduação em Diagnóstico Genético e Molecular, Universidade Luterana do Brasil, Canoas, RS, Brazil

ALP CAN • Laboratory for Stem Cell Science, Department of Histology and Embryology, Ankara University School of Medicine, Ankara University Stem Cell Institute, Ankara, Turkey

CHRISTOPHER CANNIZZARO • Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, NY, USA

CHU-YAN CHAN • Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China

LUCAS G. CHASE • Cellular Dynamics International, 525 Science Dr # 200, Madison 53711–1018, WI, USA
Andre Choo • Bioprocessing Technology Institute, Agency for Science Technology and Research, Singapore 138668, Singapore; Division of Bioengineering, National University of Singapore, 117574 Singapore

Bruno Christ • First Department of Medicine, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany

Scott T. Clarke • Life Technologies, Willow Creek Road, Eugene, OR, USA

Dimas Tadreu Covas • National Institute of Science and Technology for Stem Cells and Cell Therapy, Centro Regional de Hemoterapia de Ribeirão Preto – HCFMRP/Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, SP, Brazil; Department of Clinical Medicine, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil

Claudia Lobato da Silva • IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal

Joery De Kock • Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium

Francisco dos Santos • IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal

Gemma Eibes • Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain

Alana Eshpeter • Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada

Dario O. Fauza • Department of Surgery, Children’s Hospital Boston and Harvard Medical School, Boston, MA, USA

Trine Fink • Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark

ZhaoDI Gong • Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA

Warren L. Grayson • Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, NY, USA

Carl A. Gregory • Institute for Regenerative Medicine at Scott and White Hospital, Texas A and M Health Science Center, 5701 Airport Rd Module C, Temple 76502, TX, USA

Stan Gronthos • Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/CSCR, University of Adelaide, Adelaide, SA, Australia

Ashish Gupta • Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Cambridge, MA, USA

Deepak M. Gupta • Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA

Mandana Haack-Sorensen • Cardiology Stem Cell Laboratory and Cardiac Catheterization Laboratory, The Heart Centre, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark

Mahbod Hajivandi • Life Technologies, Eugene, OR, USA
SONIA HANCOCK • Mater Medical Research Institute, Brisbane, Queensland, Australia
GEORGE T. HANSON • Life Technologies, Eugene, OR, USA
COURTENAY HART • Life Technologies, Eugene, OR, USA
RONALD P. HART • Rutgers Stem Cell Research Center and W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
BORIS HINZ • Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, M5S 3E2, ON, Toronto, Canada
PATRICK HORN • Department of Medicine V, University of Heidelberg, Heidelberg, Germany
SHIAY-MIN HWANG • Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu, Taiwan
NINA ILIC • Mater Health Services, Brisbane, Queensland 4101, Australia
CHRISTIAN JORGENSEN • INSERM, U844 Montpellier, France
ROHIT KARNIK • Massachusetts Institute of Technology, Cambridge, MA, USA
JEFFREY M. KARP • Department of Medicine, Center for Regenerative Therapeutics Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Cambridge, MA, USA
JENS KASTRUP • Cardiology Stem Cell Laboratory and Cardiac Catheterization Laboratory, The Heart Centre, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
CHRISTOPHER W. KEMP • Kempbio, Inc, Frederick, MD, USA
JUSTIN D. KLEIN • Department of Surgery, Children’s Hospital Boston and Harvard Medical School, Boston, MA, USA
GREGORY S. KORBUTT • Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
ULF KRAUSE • Institute for Regenerative Medicine at Scott and White Hospital, Texas A and M Health Science Center, 5701 Airport Rd Module C, Temple 76502, TX, USA
HSIANG-FU KUNG • Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China
RUENN CHAI LAI • NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore; Institute of Medical Biology, Agency for Science Technology and Research, Singapore
ANITA LATTINEN • Finnish Red Cross Blood Service, Helsinki, Finland
SAARA LATTINEN • Finnish Red Cross Blood Service, Helsinki, Finland
UMA LAKSHMIPATHY • Primary and Stem Cell Systems, Life Technologies, Carlsbad, CA, USA
ENG HIN LEE • Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUS Tissue Engineering Program National University of Singapore, Singapore
YUN-SHEEN LEE • Genomic Medicine Research Core Laboratory (GMRCL), Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Department of Biotechnology, Ming Chuan University, Tao-Yuan 33302, Taiwan
SYLVAIN LEHMANN • CNRS, Institut de Génétique Humaine UPR1142, Montpellier, France; CHU Montpellier, Plateforme de Protéomique Clinique, Biochimie, Hôpital St. Eloi, Montpellier 34000, France; Université Montpellier 1, 34000 Montpellier, France
GUO LI • Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China
SAI KIANG LIM • Institute of Medical Biology, Agency for Science Technology and Research, 138648 Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore
WEI LI LOH • Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Cambridge, MA, USA
MICHAEL T. LONGAKER • Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
HICHAM MAJD • Department of Surgery, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
LINDOLFO DA SILVA MEIRELLES • National Institute of Science and Technology for Stem Cells and Cell Therapy, Centro Regional de Hemoterapia de Ribeirão Preto – HCFMRP/Universidade de São Paulo, Ribeirão Preto, SP, Brazil
PATRICIA MURRAY • Mater Medical Research Institute, Brisbane, Queensland, Australia
NANCE BEYER NARDI • Programa de Pós-Graduação em Diagnóstico Genético e Molecular, Universidade Luterana do Brasil, Canoas, RS, Brazil
LAURA E. NIKLASON • Department of Anesthesia & Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
JOHANNA NYSTEDT • Finnish Red Cross Blood Service, Helsinki, Finland
MICHAEL O’GRADY • Primary and Stem Cell Systems, Life Technologies, Eugene, OR, USA
NICHOLAS J. PANETTA • Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
REBECCA PLEKEANOS • Mater Medical Research Institute, Brisbane, Queensland, Australia
PATRICE PENFORSIS • Gene Therapy Center, Tulane University Health Science Center, New Orleans, LA 70112, USA
KITSIE J. PENCNICK • Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
RADHIKA POCHAMPALLY • Gene Therapy Center, Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
MONIQUE PROVANALS • CNRS, Institut de Génétique Humaine UPR1142, Montpellier, France; Université Montpellier 1, 34000 Montpellier, France
THOMAS M. QUINN • Department of Chemical Engineering, McGill University, Montreal, QC, Canada
PRANIGA RAMESWAR • Department of Medicine Hematology/Oncology, University of Medicine and Dentistry of New Jersey – New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
MAHENDRA S. RAO • Stem Cells and Regenerative Medicine, Life Technologies, 7335 Executive Way, Frederick 21702, MD, USA
JEPPE GRONDAHL RASMUSSEN • Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
Stéphane Roche • CNRS, Institut de Génétique Humaine UPR1142, Montpellier, France; CHU Montpellier, Plateforme de Protéomique Clinique, Biochimie, Hôpital St. Eloi, Montpellier 34000, France
Vera Rogiers • Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
Tony Rossetti • Mater Medical Research Institute, Brisbane, Queensland, Australia
Debanjan Sarkar • Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Cambridge, MA, USA
Kelly Scheyhing • Primary and Stem Cell Systems, Life Technologies, Carlsbad, CA, USA
Jacqueline Frida Schmitt • Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUS Tissue Engineering Program National University of Singapore, Singapore
Anja Seckinger • Section for Multiple Myeloma, Department of Internal Medicine V, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
Karen L. Seeberger • Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
Songtao Shi • Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CA, USA
Sarah Snykers • Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
Luis A. Solchaga • Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
Peggy Stock • First Department of Medicine, Martin-Luther University of Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle/Saale, Germany
Mavis Swerdel • Rutgers Stem Cell Research Center and W.M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
Vanhaecke Tamara • Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
Katarzyna A. Trzaska • Department of Medicine Hematology/Oncology, University of Medicine and Dentistry of New Jersey – New Jersey Medical School, Newark, NJ, USA
Mohan C. Vemuri • Stem Cells and Regenerative Medicine, Life Technologies, 7335 Executive Way, Frederick 21704, MD, USA
Gordana Vunjak-Novakovic • Laboratory for Stem Cells and Tissue Engineering, Columbia University, New York, NY, USA
Wolfgang Wagner • Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelstrasse 20, 52074 Aachen, Germany
Hua Wang • Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, P. R. China
Tzu-Hao Wang • Department of Obstetrics and Gynecology, Lin-Kou Medical Center; Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan 33302, Taiwan; Genomic Medicine Research Core Laboratory (GMRCL), Chang Gung Memorial Hospital, Tao-Yuan 33302, Taiwan
JEAN F. WELTER • Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
PIERRE-JEAN WIPFF • Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 15, 1015 Lausanne, Switzerland
ZHENG YANG • Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, NUS Tissue Engineering Program National University of Singapore, 27 Medical Drive, Singapore 117510; Stem Cell Laboratory, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074
VLADIMIR ZACHAR • Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
WEIAN ZHAO • Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Stem Cell Institute, Cambridge, MA, USA