Series Editor
John M. Walker
School of Life Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK
Drug Safety Evaluation

Methods and Protocols

Edited by

Jean-Charles Gautier

Disposition, Safety and Animal Research, sanofi-aventis, Vitry-sur-Seine, France

Humana Press
Non-clinical drug safety evaluation is the assessment of the safety profile of therapeutic agents through the conduct of laboratory studies in *in vitro* systems and in animals. The main objectives of drug safety evaluation studies are to differentiate between new drug entities that are unacceptably toxic and those that are not, characterize the potential adverse effects of new drugs, determine animal dosage levels that do not cause toxicity, and to estimate safe dosages to be used in clinical studies. Several types of studies are conducted in drug safety evaluation: acute to chronic general toxicity studies, reproductive toxicity studies, genotoxicity studies, carcinogenicity studies, safety pharmacology studies, and investigative toxicity studies.

General toxicity studies are usually performed in a rodent and in a nonrodent species to determine target organs of toxicity and evaluate doses of a new drug candidate that can be safely administered to man. In this book, specific aspects related to the experimental design of toxicity studies conducted to support drug combinations in humans and pediatric indications are described in the reviews of Chaps. 1 and 2, respectively. In general toxicity studies, the key traditional endpoints evaluated include clinical signs, clinical pathology parameters, along with macroscopic examination of organs at necropsy and light microscopic examination of a comprehensive list of tissues. Chapter 3 details the necropsy and sampling procedures used in rodents, and Chap. 4 highlights the histopathology procedures from tissue sampling to histopathological evaluation. Chapters 5 and 6 describe additional methods, such as immunohistochemistry, tissue microarrays, and digital image analysis, which can be used to complete and refine the traditional histopathological examination of organs.

Genotoxicity studies are carried out to evaluate the potential of new drug candidates to induce mutations and/or chromosomal damages. Chapter 7 presents the method of the micronucleus assay and its combination with centromeric labeling in the fluorescence *in situ* hybridization (FISH) technique to detect aneugenic events. Chapter 8 describes the comet assay, a sensitive electrophoretic method for measuring DNA strand breaks at the level of single cells, together with the use of bacterial repair endonucleases to detect specific DNA lesions.

Safety pharmacology studies are conducted to evaluate the effect of compounds on the cardiovascular, respiratory, and central nervous system functions before the first administration to humans. Chapter 9 describes a manual patch-clamp technique used to study the effect of compounds on the HERG cardiac K+ channel in order to evaluate the potential to induce “torsades de pointe”, an arrhythmic disorder that can be fatal in humans.

When unexpected toxicity arises during these studies, it is important to investigate the mechanisms of toxicity and assess the potential translation to humans. Traditional histopathological examination of target organs and clinical pathology parameters are sometimes in default, and novel ‘omics technologies, such as transcriptomics, proteomics, and metabonomics could allow to generate new hypotheses on the mechanisms of toxicity. Detailed protocols related to these ‘omics technologies are presented in Chaps. 10–12.
Of note, the gene expression results obtained via transcriptomics experiments need to be confirmed by quantitative RT-PCR. However, accurate interpretation cannot be performed without proper statistical analysis of RT-PCR data. Chapter 13 examines some of the issues concerning RT-PCR experiments that would benefit from rigorous statistical treatment.

In vitro functional assays can be used to elucidate mechanisms of toxicity in the context of drug safety evaluation. Chapter 14 describes an in vitro assay used to evaluate the effect of compounds on the mitochondrial respiration chain in cultured rat hepatocytes. Mitochondrial dysfunction is indeed a major mechanism, whereby drugs can induce liver injury and other serious side effects, such as lactic acidosis and rhabdomyolysis, in some patients. In vitro assays can also be used during the early phase of drug development to screen compounds for their potential to induce developmental toxicity. This is illustrated with the Fetax and the zebrafish models in Chaps. 15 and 16, respectively. Drug-induced toxicity is often associated with the formation of reactive metabolites that bind covalently to proteins. Chapter 17 describes in vitro assays used at the lead optimization stage of drug discovery to evaluate the potential of drug candidates to bind covalently to proteins by incubating a radiolabeled analog of the compound with liver microsomal preparations or whole cells. Sophisticated mass spectrometry-based methods can also be used to identify chemical-adducted proteins both in vitro and in vivo. This is illustrated with specific examples in Chaps. 18–21.

Another developing field in drug safety evaluation is the identification and qualification of novel safety biomarkers that can be used to better monitor potential toxicity in both preclinical and clinical studies. Ideally, these new safety biomarkers should be more sensitive and/or specific than the traditional clinical pathology parameters and should be measurable in accessible fluids, such as plasma and urine. Chapters 22–24 provide sophisticated methods to discover new safety biomarkers using proteomics and metabonomics approaches. A protocol to quantify potential protein safety biomarkers by mass spectrometry is also described in Chap. 25.

I would like to thank all the contributing authors for providing state-of-the-art procedures, detailed protocols, and tips and tricks to avoid pitfalls. I am grateful to the series editor, John Walker, for inviting me to edit this volume. The result is a compendium of analytical technologies, including some review chapters, with a focus on clarity and applicability in real life laboratory practice. The intended audience mainly consists of pharmaceutical scientists, toxicologists, biochemists, and molecular biologists, and anyone else with a specific interest in methods used in drug safety evaluation that could be translated to other disciplines.

Vitry-sur-Seine, France

Jean-Charles Gautier
Contents

Preface .. v
Contributors .. xi

PART I GENERAL TOXICOLOGY

1 Developing Combination Drugs in Preclinical Studies. 3
 Alberto Lodola

2 Preclinical Evaluation of Juvenile Toxicity 17
 Paul C. Barrow, Stéphane Barbellion, and Jeanne Stadler

PART II PATHOLOGY

3 Necropsy and Sampling Procedures in Rodents 39
 Laurence Fiette and Mohamed Slaoui

4 Histopathology Procedures: From Tissue Sampling to Histopathological Evaluation .. 69
 Mohamed Slaoui and Laurence Fiette

5 Principles and Methods of Immunohistochemistry 83
 José A. Ramos-Vara

6 Tissue Microarrays and Digital Image Analysis 97
 Denise Ryan, Laoighse Mulrane, Elton Rexhepaj, and William M. Gallagher

PART III GENETIC TOXICOLOGY

7 Micronucleus Assay and Labeling of Centromeres with FISH Technique ... 115
 Ilse Decordier, Raluca Mateuca, and Micheline Kirsch-Volders

8 The Use of Bacterial Repair Endonucleases in the Comet Assay 137
 Andrew R. Collins

PART IV SAFETY PHARMACOLOGY

9 Manual Whole-Cell Patch-Clamping of the HERG Cardiac K+ Channel 151
 Xiao-Liang Chen, Jiesheng Kang, and David Rampe

PART V INVESTIGATIVE TOXICOLOGY

10 Generation and Analysis of Transcriptomics Data 167
 Philip D. Glaves and Jonathan D. Tugwood

11 Protocols of Two-Dimensional Difference Gel Electrophoresis to Investigate Mechanisms of Toxicity 187
 Emmanuelle Com, Albrecht Gruhler, Martine Courcol, and Jean-Charles Gautier
Contents

12 Protocols and Applications of Cellular Metabolomics in Safety Studies
Using Precision-Cut Tissue Slices and Carbon 13 NMR 205
Gabriel Baverel, Sophie Renaud, Hassan Faiz, Maha El Hage,
Catherine Gauthier, Agnès Duplany, Bernard Ferrier, and Guy Martin

13 Statistical Analysis of Quantitative RT-PCR Results 227
Richard Khan-Malek and Ying Wang

14 Evaluation of Mitochondrial Respiration in Cultured Rat Hepatocytes 243
Jean-Pierre Marchandeau and Gilles Labbe

PART VI SCREENING ASSAYS FOR DEVELOPMENTAL TOXICITY

15 FETAX Assay for Evaluation of Developmental Toxicity 257
Isabelle Mouche, Laure Malesic, and Olivier Gillardeaux

16 Evaluation of Embryotoxicity Using the Zebrafish Model 271
Lisa Truong, Stacey L. Harper, and Robert L. Tanguay

PART VII CHEMICAL PROTEIN ADDUCTS

17 Protocols of In Vitro Protein Covalent Binding Studies in Liver 283
Jean-François Lévesque, Stephen H. Day, and Allen N. Jones

18 Utilization of MALDI-TOF to Determine Chemical-Protein Adduct
Formation In Vitro .. 303
Ashley A. Fisher, Matthew T. Labenski, Terrence J. Monks,
and Serrine S. Lau

19 Utilization of LC-MS/MS Analyses to Identify Site-Specific
Chemical Protein Adducts In Vitro .. 317
Ashley A. Fisher, Matthew T. Labenski, Terrence J. Monks,
and Serrine S. Lau

20 One-Dimensional Western Blotting Coupled to LC-MS/MS
Analysis to Identify Chemical-Adducted Proteins in Rat Urine 327
Matthew T. Labenski, Ashley A. Fisher, Terrence J. Monks,
and Serrine S. Lau

21 Identification of Chemical-Adducted Proteins in Urine
by Multi-dimensional Protein Identification Technology
(LC/LC–MS/MS) .. 339
Matthew T. Labenski, Ashley A. Fisher, Terrence J. Monks,
and Serrine S. Lau

PART VIII SAFETY BIOMARKERS

22 Optimization of SELDI for Biomarker Detection in Plasma 351
Jean-Francois Léonard, Martine Courcol, and Jean-Charles Gautier

23 Differential Proteomics Incorporating iTRAQ Labeling
and Multi-dimensional Separations .. 369
Ben C. Collins, Thomas Y.K. Lau, Stephen R. Pennington,
and William M. Gallagher
24 NMR and MS Methods for Metabonomics .. 385
 Frank Dieterle, Björn Riefke, Götz Schlotterbeck, Alfred Ross, Hans Senn, and Alexander Amberg

25 Absolute Quantification of Toxicological Biomarkers by Multiple Reaction Monitoring .. 417
 Thomas Y. K. Lau, Ben C. Collins, Peter Stone, Ning Tang, William M. Gallagher, and Stephen R. Pennington

Index ... 429
Contributors

ALEXANDER AMBERG • Disposition, Safety and Animal Research, sanofi-aventis R&D, Hattersheim, Germany
 STEPHANE BARBEILLON • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
 PAUL C. BARROW • Ricerca Biosciences, Les Oncins, Saint-Germain sur l’Arbresle, France
 GABRIEL BAYER • Metabolics Inc, Lyon Cedex, France
 XIAO-LIANG CHEN • Disposition, Safety and Animal Research, sanofi-aventis R&D, Bridgewater NJ, USA
 ANDREW R. COLLINS • Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
 BEN C. COLLINS • UCD School of Biomolecular and Biomedical Science and Proteome Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
 EMMANUELLE COM • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France; High-Throughput Proteomics Core Facility, Biogenouest, Rennes, France
 MARTINE COURCOL • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
 STEPHEN H. DAY • Department of Drug Metabolism and Pharmacokinetics, Merck Frosst Centre for Therapeutic Research, Kirkland QC, Canada
 ILSE DECORDIER • Laboratorium voor Celulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium
 FRANK DIETERLE • Molecular Diagnostics, Novartis Pharma AG, Basel, Switzerland
 AGNES DUPLANY • Metabolics Inc., and Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit N° 820, Lyon, France
 MAHA EL HAGE • Metabolics Inc., and Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit N° 820, Lyon, France
 HASSAN FAIZ • Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit N° 820, Lyon, France
 BERNARD FERRIER • Metabolics Inc., and Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit N° 820, Lyon, France
 LAURENCE FETITE • Human Histopathology and Animal Models Unit, Institut Pasteur, Paris, France
 ASHLEY A. FISHER • Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson AZ, USA
 WILLIAM M. GALLAGHER • UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
CATHERINE GAUTHIER • Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit No 820, Lyon, France
JEAN-CHARLES GAUTHIER • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
OLIVIER GILLARDEAUX • Disposition, Safety and Animal Research, sanofi-aventis R&D, Porcheville, France
PHILIP D. GAVES • Molecular Toxicology Group, Safety Assessment Department, AstraZeneca Pharmaceuticals Ltd, Macclesfield, Cheshire, UK
ALBRECHT GRUHLER • Novo Nordisk, Måløv, Denmark
STACEY L. HARPER • Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, USA
ALLEN N. JONES • Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, Rahway NJ, USA
JIESHENG KANG • Disposition, Safety and Animal Research, sanofi-aventis R&D, Bridgewater NJ, USA
RICHARD KHAN-MALEK • Preclinical Development Biostatistics, sanofi-aventis R&D, Inc, Bridgewater NJ, USA
MicheLIne kirsch-volders • Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium
Gilles labbe • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
Matthew T. Labenski • Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson AZ, USA
Serrine S. Lau • Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson AZ, USA
THOMAS Y. K. LAU • UCD School of Biomolecular and Biomedical Science and Proteome Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
JEAN-FRANCOIS LÉONARD • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
JEAN-FRANÇOIS LÉVESQUE • Department of Drug Metabolism and Pharmacokinetics, Merck Frost Centre for Therapeutic Research, Kirkland QC, Canada
ALBERTO LODOLA • ToxAdvantage, Noizay, France
LAURE MALESIC • Disposition, Safety and Animal Research, sanofi-aventis R&D, Porcheville, France
JEAN-PIERRE MARCHANDEAU • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
guy Martin • Metabolys Inc., and Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit No 820, Lyon, France
RALUCA MATEUCA • Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium
TERRENCE J. MONKS • Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson AZ, USA
ISABELLE MOUCHE • Disposition, Safety and Animal Research, sanofi-aventis R&D, Porcheville, France
LAOGHSE MULRANE • UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
STEPHEN R. PENNINGTON • UCD School of Medicine and Medical Science and Proteome Research Centre, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
JOSE A. RAMOS-VARA • Department of Comparative Pathobiology, Purdue University, West Lafayette IN, USA
DAVID RAMPE • Disposition, Safety and Animal Research, sanofi-aventis R&D, Bridgewater NJ, USA
SOPHIE RENAUT • Metabolomics and Metabolic Diseases, Laennec Faculty of Medicine, INSERM Unit N° 820, Lyon, France
ELTON REXHEPAJ • UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
BJÖRN RIEFKE • Laboratory Diagnostics, Non-Clinical Drug Safety Evaluation, Bayer Schering Pharma AG, Berlin, Germany
ALFRED ROSS • Hoffmann LaRoche, Basel, Switzerland
DENISE RYAN • UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
GÖTZ SCHLOTTERBECK • Hoffmann LaRoche, Basel, Switzerland
HANS SENN • Hoffmann LaRoche, Basel, Switzerland
MOHAMED SLAOUI • Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France
JEANNE STADLER • Toxicology Consulting, Tours, France
PETER STONE • Agilent Technologies, Cheadle, UK
NING TANG • Agilent Technologies, Santa Clara CA, USA
ROBERT L. TANGUY • Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, USA
LISA TRUONG • Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, USA
JONATHAN D. TUGWOOD • Molecular Toxicology Group, Safety Assessment Department, AstraZeneca Pharmaceuticals Ltd, Macclesfield, Cheshire, UK
YING WANG • Disposition, Safety and Animal Research, sanofi-aventis R&D, Inc, Bridgewater NJ, USA