Myeloma Bone Disease
Myeloma Bone Disease

Edited by

G. David Roodman

University of Pittsburgh Medical Center,
Pittsburgh, PA, USA
Multiple myeloma is the second most common hematologic malignancy and currently affects approximately 50,000 people in the United States. Each year about 20,000 people are diagnosed with myeloma. Although new treatments have been developed, which significantly prolong the survival of patients, myeloma bone disease still remains a major cause of severe morbidity and increased mortality in patients with myeloma. Myeloma bone disease is characterized by “punched out” lytic lesions caused by increased osteoclastic bone destruction accompanied by suppressed or even absent osteoblast activity. Advances in our understanding of both the pathophysiology of myeloma bone disease and the development of novel agents that target specific pathways involved in both the increased osteoclast formation and the suppressed osteoblast activity in myeloma provide new hope for these patients. The treatment of myeloma bone disease was revolutionized by clinical trials that demonstrated the significant benefit of intravenous bisphosphonate therapy in patients with myeloma bone disease. With the identification of many of the cytokines and chemokines involved in myeloma bone disease, novel therapies such as denosumab that blocks RANKL activity, anti-DKK1, which targets the inhibition of osteoblast activity by blocking Wnt signaling inhibition, and the potential anabolic effects of agents such as bortezomib and activin have greatly improved our potential to block the progression or reverse myeloma bone disease. These topics as well as new techniques for imaging myeloma bone disease, the use of new bone markers for monitoring myeloma bone disease, and surgical techniques to ameliorate pain and loss of vertebral height in patients with vertebral compression fractures are highlighted in this volume. With the survival of patients with myeloma increasing, treatments that are directed at preventing the progression of bone disease, fractures, and even repairing lytic lesions will have even a more profound impact on patients with myeloma. In this book, outstanding experts from a variety of backgrounds discuss the presentation of patients with myeloma bone disease, the underlying pathophysiology of both the increased osteoclast activity and the suppressed osteoblast activity that occurs in myeloma, murine models of myeloma bone disease, as well as therapeutic and diagnostic procedures for patients with myeloma bone disease.

Pittsburgh, PA

G. David Roodman
Contents

1 Clinical Presentation of Myeloma Bone Disease 1
 Rebecca Silbermann and G. David Roodman

2 Imaging of Multiple Myeloma, Solitary Plasmacytoma,
 MGUS, and Other Plasma Cell Dyscrasias 15
 Ronald C.Walker, Laurie Jones-Jackson, Twyla Bartel, Tracy
 Brown, and Bart Barlogie

3 Biochemical Markers of Bone Remodeling
 in Multiple Myeloma .. 63
 Evangelos Terpos

4 Radiation Therapy in Multiple Myeloma 91
 Joel S. Greenberger

5 Surgical Management of Bone Disease 101
 Mohamad A. Hussein

6 Bisphosphonates in the Treatment of Myeloma Bone Disease 117
 James R. Berenson

7 Osteonecrosis of the Jaw .. 133
 Ashraf Badros

8 Murine Models of Myeloma Bone Disease: The Importance
 of Choice .. 151
 Peter I. Croucher, Karin Vanderkerken, Joshua Epstein,
 and Babatunde Oyajobi

9 RANK Ligand Is a Therapeutic Target in Multiple Myeloma ... 169
 William C. Dougall, Michelle Chaiisson-Blake, Howard Yeh,
 and Susie Jun

10 Osteoclast Activation in Multiple Myeloma 183
 Sonia Vallet and Noopur Raje
11 Potential Role of IMiDs and Other Agents as Therapy for Myeloma Bone Disease 199
Suzanne Lentzsch

12 Proteasome Inhibitors and the Wnt Signaling Pathway in Myeloma Bone Disease 211
Claire M. Edwards and Gregory R. Mundy

13 Mechanisms Involved in Osteoblast Suppression in Multiple Myeloma 231
Nicola Giuliani

Index .. 243
Contributors

Ashraf Badros Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA

Bart Barlogie Myeloma Institute for Research and Therapy, Little Rock, AR, USA

Twyla Bartel Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA

James R. Berenson Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA

Tracy Brown Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Michelle Chaisson-Blake Amgen Inc., Seattle, WA, USA

Peter I. Croucher Department of Human Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK

William C. Dougall Amgen Inc., Seattle, WA, USA

Claire M. Edwards Departments of Cancer Biology and Clinical Pharmacology/Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA

Joshua Epstein Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Nicola Giuliani Department of Internal Medicine and Biomedical Science, Hematology and BMT Center, University of Parma, Parma, Italy

Joel S. Greenberger Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA

Mohamad A. Hussein Celgene Corporation, Summit, NJ, USA

Laurie Jones-Jackson Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
Susie Jun Amgen Inc., Thousand Oaks, CA, USA

Suzanne Lentzsch Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA

Gregory R. Mundy Departments of Cancer Biology and Clinical Pharmacology/Medicine, Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA

Babatunde Oyajobi Departments of Cellular and Structural Biology, and Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA

Noopur Raje Division of Hematology-Oncology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA

G. David Roodman Department of Medicine/Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Rebecca Silbermann Department of Medicine/Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

Evangelos Terpos Department of Clinical Therapeutics, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece

Sonia Vallet Division of Hematology-Oncology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Boston, MA, USA

Karin Vanderkerken Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit, Brussels, Belgium

Ronald C. Walker Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center and Tennessee Valley VA Healthcare System, Nashville, TN, USA

Howard Yeh Amgen Inc., Thousand Oaks, CA, USA