Cover illustration: *C. difficile* makes intimate contact through numerous flagella with microvilli on the mucosal lining of hamster cecum following a 48 hour oral infection with spores. We compare this 630 fully sequenced strain (originating from a patient with pseudomembranous colitis) with that of B1 (isolated from a patient with diarrhea) to reveal differences in behaviour during infection of the host. Scanning electron micrograph: bacterium length 4.5 μm.
Preface

Clostridium difficile is a major nosocomial pathogen and has been shown to be a primary cause of antibiotic-associated disease. Recently, there has been an emergence of highly transmissible and frequently antibiotic-resistant strains, and the organism has become a considerable burden on health-care systems worldwide. At the same time, there has been a dramatic increase in our ability to study the organism. This book brings together the key workers in *C. difficile* research to describe the recently developed methods for studying the organism. These range from methods for isolation of the organism, molecular typing, genomics, genetic manipulation, and the use of animal models. We are now therefore in a position to gain an in-depth understanding of how this organism is transmitted and how it causes disease.

Peter Mullany

Adam P. Roberts
Contents

Preface .. v

Contributors ix

PART I INTRODUCTION TO CLOSTRIDIUM DIFFICILE AND THE DISEASE IT CAUSES

1. *Clostridium difficile*: No Longer an Enigmatic Pathogen? 3
 Adam P. Roberts and Peter Mullany

2. *Clostridium difficile* and the Disease It Causes 9
 Torbjörn Norén

PART II ISOLATION AND CULTURE TECHNIQUES

3. *Clostridium difficile* Isolation and Culture Techniques 39
 Mike Wren

PART III METHODS FOR TYPING AND EPIDEMIOLOGICAL STUDIES

4. Molecular Typing Methods for *Clostridium difficile*: Pulsed-Field Gel Electrophoresis and PCR Ribotyping 55
 Sandra Janezic and Maja Rupnik

5. *Clostridium difficile* Toxinotyping .. 67
 Maja Rupnik

6. Multilocus Sequence Typing for *Clostridium difficile* 77
 Ludovic Lemée and Jean-Louis Pons

PART IV BIOCHEMISTRY OF THE ORGANISM

7. Molecular Methods to Study Transcriptional Regulation of *Clostridium difficile* Toxin Genes .. 93
 Ana Antunes and Bruno Dupuy

8. Dissecting the Cell Surface .. 117
 Robert Fagan and Neil Fairweather

9. Human Intestinal Epithelial Response(s) to *Clostridium difficile* 135
 Nazila V. Jafari, Elaine Allan, and Mona Bajaj-Elliott

PART V GENOMICS

10. Comparative Genome Analysis of *Clostridium difficile* Using DNA Microarrays ... 149
 Richard Stabler, Lisa Dawson, and Brendan Wren
PART VI DEVELOPMENT OF SYSTEMS FOR GENETIC ANALYSIS OF THE ORGANISM

11. ClosTron-Targeted Mutagenesis .. 165
 John T. Heap, Stephen T. Cartman, Sarah A. Kuehne,
 Clare Cooksley, and Nigel P. Minton

12. Methods for Gene Cloning and Targeted Mutagenesis 183
 Glen P. Carter, Dena Lyras, Rachael Poon, Pauline M. Howarth,
 and Julian I. Rood

13. Transposon Mutagenesis in Clostridium difficile 203
 Haitham A. Hussain, Adam P. Roberts, Rachael Whalan,
 and Peter Mullany

PART VII ANIMAL MODELS OF DISEASE

14. Refinement of the Hamster Model of Clostridium difficile Disease 215
 Gillian Douce and David Goulding

15. Methods for Working with the Mouse Model 229
 Anne Collignon

Subject Index ... 239
Contributors

ELAINE ALLAN • Division of Microbial Diseases, UCL Eastman Dental Institute, London, UK

ANA ANTUNES • Unité de Toxines et Pathogénie Bactérienne, Institut Pasteur, Paris, France

MONA BAJAJ-ELLIOTT • Infectious Disease and Microbiology Unit, Institute of Child Health, London, UK

GLEN P. CARTER • Department of Microbiology, Monash University, Clayton, Australia

STEPHEN T. CARTMAN • Centre for Biomolecular Sciences, Institute of Infection Immunity and Inflammation, BBSRC Sustainable BioEnergy Centre, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK

ANNE COLLIGNON • Faculté de Pharmacie, Université Paris Sud, Châtenay Malabry, France

CLARE COOKSLEY • Centre for Biomolecular Sciences, Institute of Infection Immunity and Inflammation, BBSRC Sustainable BioEnergy Centre, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK

LISA DAWSON • Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

GILLIAN DOUCE • Division of Infection and Immunity, IBLS, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK

BRUNO DUPUY • Unité de Toxines et Pathogénie Bactérienne, Institut Pasteur, Paris, France

ROBERT FAGAN • Centre for Molecular Microbiology and Infection, Imperial College London, London, UK

NEIL FAIRWEATHER • Centre for Molecular Microbiology and Infection, Imperial College London, London, UK

DAVID GOULDING • Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge, UK

JOHN T. HEAP • Centre for Biomolecular Sciences, Institute of Infection Immunity and Inflammation, BBSRC Sustainable BioEnergy Centre, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK

PAULINE M. HOWARTH • Department of Microbiology, Monash University, Clayton, Australia

HAITHAM A. HUSSAIN • Division of Microbial Diseases, UCL Eastman Dental Institute, London, UK
Contributors

NAZILA V. JAFARI • Infectious Disease and Microbiology Unit, Institute of Child Health, London, UK

SANDRA JANEZIC • Institute of Public Health Maribor, Centre for Microbiology, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia

SARAH A. KUEHNE • Centre for Biomolecular Sciences, Institute of Infection Immunity and Inflammation, BBSRC Sustainable BioEnergy Centre, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK

LUDOVIC LEMÉE • Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (GRAM EA 2656, IFR 23), Faculté de Médecine-Pharmacie, Université de Rouen, Rouen Cedex, France

DENA LYRAS • Department of Microbiology, Monash University, Clayton, Australia

NIGEL P. MINTON • Centre for Biomolecular Sciences, Institute of Infection Immunity and Inflammation, BBSRC Sustainable BioEnergy Centre, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK

PETER MULLANY • Division of Microbial Diseases, UCL Eastman Dental Institute, London, UK

TORBJÖRN NORÉN • Department of Infectious Diseases, Orebro University Hospital and Orebro University, Orebro, Sweden

ADAM P. ROBERTS • Division of Microbial Diseases, UCL Eastman Dental Institute, London, UK

JEAN-LOUIS PONS • Groupe de Recherche sur les Antimicrobiens et les Micro-organismes (GRAM EA 2656, IFR 23), Faculté de Médecine-Pharmacie, Université de Rouen, Rouen Cedex, France

RACHAEL POON • Department of Microbiology, Monash University, Clayton, Australia

JULIAN I. ROOD • Department of Microbiology, Monash University, Clayton, Australia

MAJA RUPNIK • Institute of Public Health Maribor, Centre for Microbiology, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia

RICHARD STABLER • Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

RACHAEL WHALAN • Division of Microbial Diseases, UCL Eastman Dental Institute, London, UK

BRENDAN WREN • Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK

MIKE WREN • Clinical Microbiology Laboratory, University College Hospital, London, UK