Essential Concepts in Toxicogenomics
Essential Concepts in Toxicogenomics

Edited by

Donna L. Mendrick
Gene Logic Inc,
Gaithersburg, MD, USA

and

William B. Mattes
The Critical Path Institute, Rockville, MD, USA

Humana Press
Preface

The field of toxicogenomics is moving rapidly, so it is impossible at the time of this writing to compile a classic methods textbook. Instead, we chose to identify experts in all aspects of this field and challenged them to write reviews, opinion pieces, and case studies. This book covers the main areas important to the study and use of toxicogenomics. Chapter 1 speaks to the convergence of classic approaches alongside toxicogenomics. Chapter 2 deals with the usefulness of toxicogenomics to identify the mechanism of toxicity. Chapter 3 calls attention to the issues that affect the quality of toxicogenomics experiments, as well as the implications of using microarrays as diagnostic devices. The need for appropriate statistical approaches to genomic data is discussed in Chapter 4, and Chapters 5 and 6 describe the use of genomic data to build toxicogenomic models and provide insights from the approaches of two companies. The important topic of storing the data generated in such experiments and the correct annotation that must accompany such data is considered in Chapter 7. The discussion in Chapter 8 speaks to the use of toxicogenomics to identify species similarities and differences. Chapters 9 and 10 deal with the use of genomics to identify biomarkers within the preclinical and clinical arenas. Biomarkers will only be useful if the community at large accepts them as meaningful. Consortia are important to drive this function, and Chapter 11 discusses current efforts in this area. Last but not least, Chapter 12 presents a perspective on the regulatory implications of toxicogenomic data and some of the hurdles that can be seen in its implication in GLP studies. Although this book tends to focus on pharmaceuticals, the issues facing toxicology are shared by the chemical manufacturers, the tobacco industry, and their regulators. We want to thank our contributors for their generous time and energy in providing their insights. Sadly, we must note the unexpected passing of one of our authors, Dr. Joseph Hackett of the FDA. Joe’s contribution serves as a testimony to his accomplishments in this field, and his insight will be missed in the years to come.

Donna L. Mendrick

William B. Mattes
Contents

Preface ... v
Contributors .. ix
Color Plates ... xi

1 Toxicogenomics and Classic Toxicology: How to Improve Prediction and Mechanistic Understanding of Human Toxicity
 Donna L. Mendrick .. 1

2 Use of Traditional End Points and Gene Dysregulation to Understand Mechanisms of Toxicity: Toxicogenomics in Mechanistic Toxicology
 Wayne R. Buck, Jeffrey F. Waring, and Eric A. Blomme 23

3 Quality Control of Microarray Assays for Toxicogenomic and In Vitro Diagnostic Applications
 Karol L. Thompson and Joseph Hackett 45

4 Role of Statistics in Toxicogenomics
 Michael Elashoff ... 69

5 Predictive Toxicogenomics in Preclinical Discovery
 Scott A. Barros and Rory B. Martin 89

6 In Vivo Predictive Toxicogenomics
 Mark W. Porter .. 113

7 Bioinformatics: Databasing and Gene Annotation
 Lyle D. Burgoon and Timothy R. Zacharewski 145

8 Microarray Probe Mapping and Annotation in Cross-Species Comparative Toxicogenomics
 John N. Calley, William B. Mattes, and Timothy P. Ryan 159

9 Toxicogenomics in Biomarker Discovery
 Marc F. DeCristofaro and Kellye K. Daniels 185

10 From Pharmacogenomics to Translational Biomarkers
 Donna L. Mendrick ... 195

11 Public Consortium Efforts in Toxicogenomics
 William B. Mattes .. 221
Contents

12 Applications of Toxicogenomics to Nonclinical Drug Development: Regulatory Science Considerations
 Frank D. Sistare and Joseph J. DeGeorge 239

Index.. 263
Contributors

SCOTT A. BARROS • Toxicology, Archemix Corp., Cambridge, Massachusetts
ERIC A. BLOMME • Department of Cellular and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois
WAYNE R. BUCK • Department of Cellular and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois
LYLE D. BURGOON • Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan
JOHN N. CALLEY • Department of Integrative Biology, Eli Lilly and Company, Greenfield, Indiana
KELLY K. DANIELS • Department of Toxicogenomics, Gene Logic Inc., Gaithersburg, Maryland
MARC F. DECRISTOFARO • Biomarker Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
JOSEPH J. DEGEORGE • Laboratory Sciences and Investigative Toxicology, Merck & Co Inc, West Point, Pennsylvania
MICHAEL ELASHOFF • Department of BioStatistics, CardioDx, Palo Alto, California
JOSEPH HACKETT • Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Rockville, Maryland
RORY B. MARTIN • Drug Safety and Disposition, Millennium Pharmaceuticals, Cambridge, Massachusetts
WILLIAM B. MATTES • Department of Toxicology, The Critical Path Institute, Rockville, Maryland
DONNA L. MENDRICK • Department of Toxicogenomics, Gene Logic Inc., Gaithersburg, Maryland
MARK W. PORTER • Department of Toxicogenomics, Gene Logic Inc., Gaithersburg, Maryland
TIMOTHY P. RYAN • Department of Integrative Biology, Eli Lilly and Company, Greenfield, Indiana
FRANK D. SISTARE • Laboratory Sciences and Investigative Toxicology, Merck & Co Inc., West Point, Pennsylvania
Contributors

Karol L. Thompson • Division of Applied Pharmacology Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland

Jeffrey F. Waring • Department of Cellular and Molecular Toxicology, Abbott Laboratories, Abbott Park, Illinois

Timothy R. Zacharewski • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
Color Plates

Color plates follow p. 112.

Color Plate 1 Identification of genes regulated in the liver of rats after xenobiotic activation of the nuclear receptors PPAR-\(\alpha \), aromatic hydrocarbon receptor (AhR), or pregnane X receptor (PXR). (Chapter 2, Fig. 1; see legend and discussion on p. 26.)

Color Plate 2 Hierarchical clustering of gene expression profiles of the testes of male Sprague-Dawley rats treated with a single dose of various testicular toxicants and sacrificed 24 h after treatment. (Chapter 2, Fig. 2; see legend and discussion on p. 35.)

Color Plate 3 Heatmap of gene expression profiles from the liver of rats treated with Cpd-001 (arrow) and a wide variety of reference compounds including nonhepatotoxicants and hepatotoxics. (Chapter 2, Fig. 4; see legend and discussion on p. 38.)

Color Plate 4 Distributions for error estimators based on proteasome data. (Chapter 5, Fig. 2; see legend and discussion on p. 95.)

Color Plate 5 Operating characteristics of the baseline in vitro classifier as a function of classification cutpoint. Replicate observations were treated independently. (Chapter 5, Fig. 5; see legend and discussion on p. 104.)

Color Plate 6 Operating characteristics of the baseline in vivo classifier as a function of classification cutpoint. (Chapter 5, Fig. 6; see legend on p. 105 and discussion on p. 104.)

Color Plate 7 Similarity tree for in vitro compounds. (Chapter 5, Fig. 7; see legend on p. 107 and discussion on p. 106.)

Color Plate 8 Model scores for two doses of thioacetamide or vehicle-treated samples at 6-, 24-, and 48-h exposures. (Chapter 6, Fig. 4; see legend and discussion on p. 138.)