DNA and RNA Profiling in Human Blood
496. DNA and RNA Profiling in Human Blood: Methods and Protocols, edited by Peter Bugert, 2009
489. Dynamic Brain Imaging: Methods and Protocols, edited by Fahmeed Hyder, 2009
469. Wnt Signaling, Volume 2: Pathway Models, edited by Elizabeth Vincan, 2008
468. Wnt Signaling, Volume 1: Pathway Methods and Mammalian Models, edited by Elizabeth Vincan, 2008
463. The Nucleus, Volume 1: Nuclei and Subnuclear Components, edited by Ronald Hancock, 2008
458. Artificial Neural Networks: Methods and Applications, edited by David S. Livingstone, 2008
457. Membrane Trafficking, edited by Alex Vancura, 2008
454. SARS- and Other Coronaviruses: Laboratory Protocols, edited by Dave Cavanagh, 2008
448. Pharmacogenomics in Drug Discovery and Development, edited by Qing Yan, 2008
444. Prenatal Diagnosis, edited by Sinhue Hahn and Laird G. Jackson, 2008
DNA and RNA Profiling in Human Blood

Methods and Protocols

Edited by

Peter Bugert, PhD
Institute of Transfusion Medicine and Immunology, Mannheim, Germany
Preface

Blood samples are widely used as biological specimens for diagnostic or research purposes. There are many examples of important disease markers which can be investigated using peripheral blood. In the context of blood transfusion and immunohematology, blood itself is the target of investigation with regard to the determination of blood groups and the screening for antibodies. Furthermore, blood samples represent the main source of genetic material, i.e., DNA and RNA, for analyzing gene mutations, polymorphisms, and expression at the molecular level.

The development of novel bioanalytical technologies for complex and quantitative molecular analysis of DNA, RNA, proteins, and cell functions led to the introduction of ‘-omics’ terms such as genomics, transcriptomics or proteomics. These molecular profiling approaches have opened up a broad field of research and may help to identify further disease markers in blood. Recently developed techniques, such as microarrays or bead arrays, represent the basis of high-throughput multiplex DNA typing and RNA profiling. Such methods have been applied already to blood cells or plasma and many of them were adapted to the special characteristics of blood cells. Thus, protocols have been developed to achieve diagnostic systems in the fields of genotyping for blood cell antigens including Human Leukocyte Antigens (HLA) and blood groups. The diagnostic systems are of great importance in blood transfusion and organ transplantation. Furthermore, special protocols were adapted to particularities of certain blood cell types such as platelets or reticulocytes in order to address questions in the field of gene expression analysis.

The aim of DNA AND RNA PROFILING IN HUMAN BLOOD is to bring together established, standardized, and recently developed protocols for complex and/or high-throughput DNA and RNA profiling. This book consists of two sections, Part I: DNA Profiling for Blood Cell Antigens, and Part II: RNA Profiling in Blood Cells. In Part I, a number of methods and protocols describe high-throughput multiplex approaches for genotyping of various blood cell antigens (see Chapters 1–5, 8, and 9). Blood grouping by DNA typing also includes a step-by-step protocol for prenatal RhD determination using of maternal plasma (see Chapter 11). Other DNA protocols describe modern techniques for SNP typing other than blood cell antigen SNPs (see Chapters 6, 7, 10 and 12) that may serve as examples to establish protocols for the own purposes.

Part II is focused on RNA profiling methods and protocols that have been adapted to the special characteristics of certain blood cell types such as platelets (see Chapters 16–18), reticulocytes (see Chapter 20) or megakaryocytes (see Chapter 19). Furthermore, methods and protocols are included to describe recently developed techniques which have been applied to blood samples (see Chapters 13, 14, 21, and 22) or which may be applied to RNA samples of any type of biological source (see Chapters 12 and 15).

This book summarizes contributions from leading international experts in the fields of DNA and RNA profiling. As editor of this volume, I am very grateful indeed to themfor
their willingness to provide an insight into their knowledge and to provide the detailed step-by-step protocols. I also wish to thank Steffanie Bickelhaupt and Daniela Griffiths for considerable editorial and secretarial assistance.

Peter Bugert
Contents

Preface .. v
Contributors .. ix

PART I DNA PROFILING FOR BLOOD CELL ANTIGENS

1 PCR–ELISA for High-Throughput Blood Group Genotyping
 Maryse St-Louis ... 3

2 Single Base Extension in Multiplex Blood Group Genotyping
 Gregory A. Denomme ... 15

3 Real-Time PCR Assays for High-Throughput Blood Group Genotyping
 Fernando Araujo ... 25

4 Real-Time PCR Assays for High-Throughput Human Platelet Antigen Typing
 Simon E. McBride .. 39

5 Multiplex ABO Genotyping by Minisequencing
 Gianmarco Ferri and Susi Pelotti .. 51

6 Multiplex Genotyping for Thrombophilia-Associated SNPs by Universal Bead Arrays
 Susan Bortolin ... 59

7 Pyrosequencing of Toll-Like Receptor Polymorphisms of Functional Relevance
 Parviz Ahmad-Nejad .. 73

8 Multiplex HLA-Typing by Pyrosequencing
 Ying Lu, Julian Boehm, Lynn Nichol, Massimo Trucco, and Steven Ringquist 89

9 High-Throughput Multiplex HLA-Typing by Ligase Detection Reaction (LDR) and Universal Array (UA) Approach
 Clarissa Consolandi ... 115

10 Medium- to High-Throughput SNP Genotyping Using VeraCode Microbeads
 Charles H. Lin, Joanne M. Yeakley, Timothy K. McDaniel, and Richard Shen 129

11 The Use of Maternal Plasma for Prenatal RhD Blood Group Genotyping
 Kirstin Finning, Pete Martin, and Geoff Daniels ... 143

PART II RNA PROFILING IN BLOOD CELLS

12 Nanoliter High-Throughput PCR for DNA and RNA Profiling
 Colin J. H. Brenan, Douglas Roberts, and James Hurley 161
13 RNA Stabilization of Peripheral Blood and Profiling by Bead Chip Analysis
 Svenja Debey-Pascher, Daniela Eggle, and Joachim L. Schultze 175
14 RNA Profiling in Peripheral Blood Cells by Fluorescent Differential Display PCR
 Martin Steinau and Mangalathu S. Rajeevan ... 211
15 cDNA Amplification by SMART-PCR and Suppression Subtractive Hybridization (SSH)-PCR
 Andrew Hillmann, Eimear Dunne, and Dermot Kenny 223
16 Transcript Profiling of Human Platelets Using Microarray and Serial Analysis of Gene Expression (SAGE)
 Dmitri V. Gnatenko, John J. Dunn, John Schwedes, and Wadie F. Bahou 245
17 Genome-Wide Platelet RNA Profiling in Clinical Samples
 Angelika Schedel and Nina Rolf .. 273
18 PCR-Based Amplification of Platelet mRNA Sequences Obtained From Small-Scale Platelet Samples
 Jutta M. Rox, Jens Müller, and Bernd Pötzsch 285
19 MicroRNA Profiling of Megakaryocytes
 Ramiro Garzon .. 293
20 Serial Analysis of Gene Expression Adapted for Downsized Extracts (SAGE/SADE) Analysis in Reticulocytes
 Béatrice Bonafoux and Thérèse Commes ... 299
21 Real-Time PCR Analysis for Blood Cell Lineage Specific Markers
 Louise Edvardsson and Tor Olofsson .. 313
22 Monitoring the Immune Response Using Real-Time PCR
 Patrick Stordeur .. 323

Index ... 339
Contributors

Parviz Ahmad-Nejad, MD • Institute for Clinical Chemistry, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
Fernando Araujo, MD, PhD • Molecular Biology Center, Department of Transfusion Medicine and Blood Center, Medicine Faculty of Oporto University and S. João Hospital, Portugal
Wadie F. Bahou, MD • Division of Hematology/Oncology, Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
Julian Boehm • Division of Immunogenetics, Department of Pediatrics, Rangos Research Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
Béatrice Bonafoux, MD, PhD • Laboratoire de Biologie, Centre Hospitalier, Ales, France
Susan Bortolin, PhD • Luminex Molecular Diagnostics, Toronto, ON, Canada
Colin J. H. Brenan, PhD • BioTrove Inc., Woburn, MA, USA
Thérèse Commes, PhD • Institut de Génétique Humaine, Montpellier, France
Clarissa Consolandi, PhD • Institute for Biomedical Technologies, National Research Council, Milano, Italy
Geoff Daniels, PhD, F.R.C. Path. • International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
Svenja Debeys-Pascher • Department for Genomics, Life and Medical Sciences, University of Bonn, Bonn, Germany
Gregory A. Denomme, PhD • Research & Development, Canadian Blood Service, Toronto, Canada
John J. Dunn, PhD • Biology Department, Brookhaven National Laboratory, Upton, NY, USA
Eimear Dunne • Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
Louise Edvardsson • Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Biomedical Center, Lund University, Lund, Sweden
Daniela Eggles • Department for Genomics, Life and Medical Sciences, University of Bonn, Bonn, Germany
Gianmarco Ferrì, PhD • Department of Diagnostic and Laboratory Service and Legal Medicine, Section of Legal Medicine, University of Modena Reggio Emilia, Italy
Kirstin Finning, PhD • International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
Ramiro Garzon, MD • Department of Medicine, Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University, USA
Dmitri V. Gnatenko, PhD • Division of Hematology/Oncology, Department of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
Andrew Hillmann, PhD • Regenerative Medicine Institute (REMED), National University of Ireland, Galway, Ireland
Contributors

JAMES HURLEY • BioTrove Inc., Woburn, MA, USA
DERMOT KENNY, MD • Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
CHARLES H. LIN • Illumina, Inc., San Diego, CA, USA
YING LU • Division of Immunogenetics, Department of Pediatrics, Rangos Research Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
PETE MARTIN • International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
SIMON E. McBride • Department of Platelet Immunology, NHS Blood and Transplant, Cambridge, UK
TIMOTHY K. McDaniel • Illumina, Inc., San Diego, CA, USA
JENS MÜLLER, MSc • Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
LYNN NICOL • Division of Immunogenetics, Department of Pediatrics, Rangos Research Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
TOR OLOFFSON • Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Biomedical Center, Lund University, Lund, Sweden
SUSI PELOTTI, MD • Department of Medicine and Public Health, Section of Legal Medicine, University of Bologna, Italy
BERND PÖTZSCH, MD • Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
MANGALATHU S. RAJEEVAN, PhD • National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED), Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
STEVEN RINGQUIST • Division of Immunogenetics, Department of Pediatrics, Rangos Research Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
DOUGLAS ROBERTS • BioTrove Inc., Woburn, MA, USA
NINA ROLF, MD • Children’s Hospital, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
JUTTA M. ROX, MD • Institute for Transplantation Diagnostics and Cellular Therapeutics, University of Düsseldorf; Germany
ANGELIKA SCHEDEL, MSc • Institute of Transfusion Medicine and Immunology, University of Heidelberg, Medical Faculty of Mannheim, Mannheim, Germany
JOACHIM L. SCHULTZE • Department of Genomics, Life and Medical Sciences, University of Bonn, Bonn, Germany
JOHN SCHWEDES, MS • University DNA Microarray Facility, Office of Scientific Affairs, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
RICHARD SHEN • Illumina, Inc., San Diego, CA, USA
MARTIN STEINAU, PhD • National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED), Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
MARYSE ST-Louis, PhD • Research & Development, Héma-Québec, Québec, Canada
PATRICK STORDEUR, PhD • Département d’Immunobiologie-Hématologie-Transfusion, Hôpital Erasme, Université Libre de Bruxelles, Belgium
MASSIMO TRUCCO • Division of Immunogenetics, Department of Pediatrics, Rangos Research Center Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

JOANNE M. YEAKLEY • Illumina, Inc., San Diego, CA, USA