Gene Knockout Protocols

Second Edition

Edited by

Ralf Kühn

Institute for Developmental Genetics, Helmholtz Center Munich - German Research Center for Environmental Health, Munich, Germany; Technical University Munich, Munich, Germany

Wolfgang Wurst

Institute for Developmental Genetics, Helmholtz Center Munich - German Research Center for Environmental Health, Munich, Germany; Max-Planck-Institute of Psychiatry, Munich, Germany; Technical University Munich, Munich, Germany

Humana Press
Preface

Following the completion of the mouse and human genome sequences, a major challenge is the functional characterization of every mammalian gene and the deciphering of their molecular interaction network. The mouse offers many advantages for the use of genetics to study human biology and disease, unmatched among other mammals. Its development, body plan, physiology, behavior, and diseases have much in common, based on the fact that 99% of the human genes have a mouse ortholog. The investigation of gene function using mouse models is based on many years of technological development. In the two decades since gene targeting in murine embryonic stem (ES) cells was first described by Mario Capecchi and colleagues, more than 3000 predesigned mouse mutants have been developed. To date, a variety of mouse mutagenesis techniques, either gene- or phenotype-driven, are used as systematic approaches. The availability of the genome sequence supports gene-driven approaches such as gene-trap and targeted mutagenesis in ES cells, allowing efficient and precise gene disruption. In combination with the use of site-specific DNA recombinases, in particular the Cre/loxP system, gene disruption can be directed to specific cell types in conditional mouse mutants. Furthermore, chemical and transposon mutagenesis of the mouse genome enables us to perform phenotype-driven screens for the unbiased identification of phenotype–genotype correlations involved in models of human disease. Over the next several years, the mouse genome will be systematically altered, and the techniques for achieving predesigned manipulations will be constantly developed further and improved.

The second edition of Gene Knockout Protocols brings together distinguished contributors with extensive experience in the gene targeting and mouse genetics fields. In line with the successful format of Methods in Molecular Biology, the volume provides a comprehensive collection of step-by-step protocols of use not only for the beginner in the field but also for experienced scientists. The new edition particularly emphasizes the range of new mutagenesis techniques developed over the last seven years, but also covers the basic methods relevant to researchers performing classical gene targeting experiments. The 25 chapters of this volume are organized into four sections on gene modification in ES cells, stem cell manipulation, the generation of genetically engineered mice, and mutant phenotype analysis. The contents reflect the diversification of mutagenesis approaches that now include, besides classical gene targeting, gene modification by oligonucleotides, gene trap mutagenesis, RNAi-mediated knockdown, transposon, and ENU mutagenesis. Conditional gene inactivation through Cre/loxP recombination is covered by chapters on the construction of conditional vectors for gene targeting, gene trap, gene knockdown, and chromosome engineering, complemented by chapters on the generation of constitutive and inducible Cre transgenic mice and the Cre mouse strain database. While most of the chapters describe methods to generate new mutants or transgenic mice the content is completed by techniques relevant for the preservation and phenotyping of mutants. These
include sperm freezing, ES cell line establishment, ES cell in vitro differentiation, mouse pathology, mutant phenotyping, and the influence of genetic background on phenotypes.

We hope that this new edition of *Gene Knockout Protocols* that provides a unique collection of bench protocols written by experts will be a valuable resource for all scientists in the field and will further stimulate research on mouse genetics.

Ralf Kühn
Wolfgang Wurst
Contents

Preface .. v
Contributors .. ix
Color Plates .. xv

1. Overview on Mouse Mutagenesis .. 1
 Ralf Kühn and Wolfgang Wurst

PART I: GENE MODIFICATION IN ES CELLS

2. Construction of Gene-Targeting Vectors by Recombineering 15
 Song-Choon Lee, Wei Wang, and Pentao Liu

3. Gene-Trap Vectors and Mutagenesis .. 29
 Silke De-Zolt, Joachim Altschmied, Patricia Ruiz, Harald von Melchner, and
 Frank Schnüttgen

4. Chromosome Engineering in ES Cells .. 49
 Louise van der Weyden, Charles Shaw-Smith, and Allan Bradley

5. Gene Modification in Embryonic Stem Cells by Single-Stranded DNA
 Oligonucleotides .. 79
 Marieke Aarts, Marleen Dekker, Rob Dekker, Sandra de Vries, Anja van der Wal,
 Eva Wielders, and Hein te Riele

6. Generation of shRNA Transgenic Mice ... 101
 Christiane Hitz, Patricia Steuber-Buchberger, Sabit Delic, Wolfgang Wurst,
 and Ralf Kühn

7. Mutagenesis of Mouse Embryonic Stem Cells with Ethylmethanesulfonate 131
 Robert Munroe and John Schimenti

PART II: STEM CELL MANIPULATION

8. Gene Targeting in Mouse Embryonic Stem Cells 141
 Lino Tessarollo, Mary Ellen Palko, Keiko Akagi, and Vincenzo Coppola

9. Manipulating Mouse Embryonic Stem Cells 165
 Eileen Southon and Lino Tessarollo

10. ES Cell Line Establishment ... 187
 Heidrun Kern and Branko Zevnik

 Eva Wielders, Marleen Dekker, and Hein te Riele

12. Differentiation Analysis of Pluripotent Mouse Embryonic Stem (ES) Cells
 In Vitro .. 219
 Insa S. Schroeder, Cornelia Wiese, Thuy T. Truong, Alexandra Rolletschek,
 and Anna M. Wobus

13. Cloning of ES Cells and Mice by Nuclear Transfer 251
 Sayaka Wakayama, Satoshi Kishigami, and Teruhiko Wakayama

vii
PART III: GENETICALLY ENGINEERED MICE

14. Isolation, Microinjection and Transfer of Mouse Blastocysts 269
 Susan W. Reid and Lino Tessarollo

15. Aggregation Chimeras: Combining ES Cells, Diploid, and Tetraploid Embryos ... 287
 Mika Tanaka, Anna-Katerina Hadjantonakis, Kristina Vintersten, and Andras Nagy

16. VelociMouse: Fully ES Cell-Derived F0-Generation Mice Obtained from the Injection of ES Cells into Eight-Cell-Stage Embryos ... 311
 Thomas M. DeChiara, William T. Poueymirou, Wojtek Auerbach, David Frendewey, George D. Yancopoulos, and David M. Valenzuela

17. Generation of Cre Recombinase-Expressing Transgenic Mice Using Bacterial Artificial Chromosomes ... 325
 Jan Rodrigues Parkitna, David Engblom, and Günther Schütz

18. Inducible Cre Mice .. 343
 Susanne Feil, Nadejda Valtcheva, and Robert Feil

19. Creation and Use of a Cre Recombinase Transgenic Database ... 365
 Andras Nagy, Lynn Mar, and Graham Watts

20. Transposon Mutagenesis in Mice .. 379
 David A. Largaespada

21. Lentiviral Transgenesis ... 391
 Alexander Pfeifer and Andreas Hofmann

22. Sperm Cryopreservation and In Vitro Fertilization ... 407
 Susan Marschall, Auke Boersma, and Martin Hrabe de Angelis

PART IV: PHENOTYPE ANALYSIS

23. Influence of Genetic Background on Genetically Engineered Mouse Phenotypes ... 423
 Thomas Doetschman

24. Pathologic Phenotyping of Mutant Mice ... 435
 Roderick T. Bronson

25. Systemic First-Line Phenotyping .. 463

Index .. 511
Contributors

MARIEKE AARTS • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands

JERZEY ADAMSKI • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany

THURE ADLER • Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany

ANTONIO AGUILAR PIMENTEL • Clinical Research Division of Molecular and Clinical Allergotoxicology, Technische Universität München, Munich, Germany

BERND AIGNER • Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany

KEIKO AKAGI • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA

JOACHIM ALTSCHMIED • Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany

WOJTEK AUERBACH • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

LORE BECKER • Friedrich-Baur-Institut, Department of Neurology, Medical School, Ludwig-Maximilians-Universität München, Munich, Germany

HEIDRUN BEHRENDT • Division of Environmental Dermatology and Allergy TUM/ HMGUGSF, ZAUM-Center for Allergy and Environment, Technische Universität München, Munich, Germany

AUKE BOERSMA • Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany

INES BOLLE • Institute for Inhalation Biology, Helmholtz Zentrum München, Neuherberg, Germany

ALLAN BRADLEY • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom

RODERICK T. BRONSON • Department of Biomedical Sciences, Pathology, Tufts University, Massachusetts, MA, USA

DIRK H. BUSCH • Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany

JULIA CALZADA-WACK • Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany

VINCENZO COPPOLA • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA

CLAUDIA DALKE • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany

THOMAS M. DECHIARA • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

MARLEEN DEKKER • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
ROB DEKKER • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
SABIT DELIC • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany
THOMAS DOETSCHMAN • BIO5 Institute, University of Arizona, Tucson, AZ, USA
NICOLE EHRRHARDT • Biology Faculty, Department of Animal Physiology, Philipps-Universität, Marburg, Germany
DAVID ENGBLOM • Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
JACK FAVOR • Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
ROBERT FEIL • Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
SUSANNE FEIL • Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
BARBARA FERWAGNER • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
DAVID FRENDIEWEY • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
HELMUT FUHS • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
VALÉRIE GAILUS-DURNER • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
JOACHIM GRAW • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany; Lehrstuhl für Entwicklungsgenetik, Technische Universität München, Munich
ANNA-KATERINA HADJANTONAKIS • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
WOLFGANG HANS • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
GERHARD HELDMAIER • Biology Faculty, Department of Animal Physiology, Philipps-Universität Marburg, Germany
CHRISTIANE HITZ • Institute for Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
ANDREAS HOFMANN • Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
SABINE M. HÖLTER • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany; Lehrstuhl für Entwicklungsgenetik, Technische Universität München, Munich, Germany
GABRIELE HÖLZLWIMMER • Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
MARION HORSCH • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
MARTIN HRABÉ DE ANGELIS • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany
BORIS IVANDIC • Department of Medicine III, Div. of Cardiology, University of Heidelberg, Germany

ANAHITA JAVAHERI • Clinical Research Division of Molecular and Clinical Allergotoxicology, Technische Universität München, Munich, Germany

MAGDALENA KALNIK • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany

HUGO KATUS • Department of Medicine III, Div. of Cardiology, University of Heidelberg, Germany

HEIDRUN KERN • Department of Applied Genetics, TaconicArtemis GmbH, Cologne, Germany

SATOSHI KISHIGAMI • Center for Developmental Biology RIKEN Kobe, Kobe, Japan

EVA KLING • Friedrich-Baur-Institut, Department of Neurology, Medical School, Ludwig-Maximilians-Universität München, Munich, Germany

 MARTIN KLINGENSPOR • Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, Munich, Germany

THOMAS KLOPSTOCK • Friedrich-Baur-Institut, Department of Neurology, Medical School, Ludwig-Maximilians-Universität München, Munich, Germany

RALF KÜHN • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany; Lehrstuhl für Entwicklungsgenetik, Technische Universität München, Munich, Germany

DAVID A. LARGAESPA DA • University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis, MN, USA

SONG-CHOON LEE • Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

CHRISTOPH LENGER • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany

PENTAO LIU • Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

LYNN MAR • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario Canada

SUSAN MARSHALL • Institute of Experimental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany

HARALD VON MELCHNER • Department of Molecular Hematology, University of Frankfurt am Main, Germany

ILONA MOSSBRUGGER • Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany

CORINNA MÖRTH • Institute of Mammalian Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany

ROBERT MUNROE • College of Veterinary Medicine, Cornell University, Ithaca, NY, USA

ANDRAS NAGY • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada

BEATRIX NATON • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany

MARKUS OLLERT • Clinical Research Division of Molecular and Clinical Allergotoxicology, Technische Universität München, Munich, Germany

MARY ELLEN PALKO • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
ALEXANDER PFEIFER • Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
WILLIAM T. POUEYMIROU • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
CORNELIA PREHN • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
OLIVER PUK • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany
LETICIA QUINTANILLA-MARTINEZ • Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
JOHN SCHIMENTI • College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
BIRGIT RATHKOLB • Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
SUSAN W. REID • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
HEIN TE RIELE • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
JAN RODRIGUEZ PARIKITA • Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
ALEXANDRA ROLLETSCHE • In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
JAN ROZMAN • Biology Faculty, Department of Animal Physiology, Philipps-Universität Marburg, Germany
PATRICIA RUIZ • Center for Cardiovascular Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
FRANK SCHNÜTGEN • Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany
ANJA SCHREW • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Medicine III, Division of Cardiology, University of Heidelberg, Germany
INSA S. SCHRÖDER • In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
HOLGER SCHULZ • Institute for Inhalation Biology, Helmholtz Zentrum München, Neuherberg, Germany
GÜNTHER SCHÜTZ • Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
CHARLES SHAW-SMITH • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
EILEEN SOUTHON • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
PATRICIA STEUBER-BUCHBERGER • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Munich, Germany
MIKA TANAKA • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
Lino Tessarollo • Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA
Frank Thiele • Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
Thuy T. Truong • In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
David M. Valenzuela • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
Nadejda Valtcheva • Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
Kristina Vintersten • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
Sandra de Vries • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
Sayaka Wakayama • Center for Developmental Biology RIKEN Kobe, Kobe, Japan
Teruhiko Wakayama • Center for Developmental Biology RIKEN Kobe, Kobe, Japan
Anja van der Wal • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
Wei Wang • Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
Graham Watts • Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
Louise van der Weyden • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
Eva Wielders • The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam, The Netherlands
Cornelia Wiese • In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
Anna M. Wobus • In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
Eckhard Wolf • Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
Wolfgang Wurst • Institute for Developmental Genetics, Helmholtz Zentrum München – German Research Center for Environmental Health & Max-Planck-Institute for Psychiatry, Munich, Germany; Lehrstuhl für Entwicklungsgenetik, Technische Universität München, Munich, Germany
George D. Yancopoulos • Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
Branko Zevnik • Department of Applied Genetics, TaconicArtemis GmbH, Cologne, Germany
Silke de-Zolt • Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany
Color Plate 1 Protocol for mES cell-derived cardiac differentiation. Five-day EBs were plated onto gelatin- or laminin-coated plates and cultured in IMDM+20%FCS supplemented with L-glutamine, NEAA, and MTG for up to 24 days. Multilineage progenitors at the intermediate stage 2 co-express nestin and desmin, while terminally differentiated cardiac clusters (stage 3) show well-organized sarcomeric staining of Z-disk epitopes of titin. Beating frequency measured from a beating cluster (phase contrast) by the LUCIA HEART imaging system is shown at the right, bar = 50 μm (see discussion on p. 229)

Color Plate 2 Protocol for mES cell-derived neuronal differentiation. ES cells were cultured as EBs for 4 days. After plating onto gelatin, cells were cultured in B1 supplements and FCS-containing medium for 24 h (*). After medium change (at day 4+1), EB outgrowths were cultured until day 4+8 without FCS to select for neural progenitors. At day 4+8, EBs were dissociated and replated onto poly-L-ornithine/laminin until day 4+14, when differentiation of mature neurons was induced by “Neurobasal” medium, B27 supplement, and SPFs (“survival promoting factors”). The table shows the media, additives, and substrates used with this protocol. Differentiation led to nestin-positive neural progenitors (stage 2) followed by β-III-tubulin-expressing neuronal cells at stage 3 (4+14 d) and dopaminergic neurons expressing tyrosine hydroxylase at stage 4. A phase contrast picture shows the morphology of the ES cell-derived neurons at stage 4 (right) (see discussion on p. 230)

Color Plate 3 Protocol for mES cell-derived pancreatic differentiation. Scheme displays media, additives, and substrates used during the differentiation process. Five-day EBs were plated onto gelatin for spontaneous differentiation in IMDM containing 20% FCS, L-Glut, NEAA, and MTG. At day 5+9, EBs were dissociated and replated onto poly-L-ornithine/laminin and subjected to differentiation by adding the differentiation factors niacinamide (NA), laminin, insulin, sodium selenite, transferrin, progesterone, and putrescine (and FCS for 24 h after plating). After medium change (at day 5+10), differentiation was continued (without FCS) until day 5+28. During spontaneous differentiation, nestin/CK19 co-expressing multilineage progenitors were formed (stage 2). Directed differentiation resulted in C-peptide/nestin-positive committed progenitors (stage 3) and insulin/C-peptide co-expressing islet-like clusters (stage 4; images
Color Plate 4 Protocol for mES cell-derived hepatic differentiation. Scheme displays media, additives, and substrates used during the differentiation process. Five-day EBs were plated onto gelatin for spontaneous differentiation in IMDM containing 20% FCS, L-Glut, NEAA, and MTG. At day 5+9, differentiation into the hepatic lineage was induced by dissociation of the EBs and replating onto collagen I. Cells were cultured in differentiation medium (HCM) containing 10% FCS until day 5+9+30. Spontaneous differentiation led to nestin/AFP-positive multilineage progenitors (stage 2). Differentiation resulted in albumin/AFP co-expressing committed progenitors at stage 3, and albumin- and AAT-positive, partially binucleated hepatocyte-like cells (stage 4, images from (53)) with cuboidal morphology (phase contrast, right, from (77)) at day 5+9+30. Cell nuclei were visualized by Hoechst 33342 (blue). Bars = 20 μm (see discussion on p. 232)