Apoptosis, Senescence, and Cancer
Cancer Drug Discovery and Development

Beverly A. Teicher, Series Editor

Apoptosis, Senescence, and Cancer, edited by David A. Gewirtz, Shawn E. Holt and Steven Grant, 2007

Oncogene-Directed Therapies, edited by Janusz Rak, 2003

Chemoradiation in Cancer Therapy, edited by Hak Choy, 2003

Fluoropyrimidines in Cancer Therapy, edited by YouCEF M. Rustum, 2003

Targets for Cancer Chemotherapy: Transcription Factors and Other Nuclear Proteins, edited by Nicholas B. La Thangue and Lan R. Bandara, 2002

Tumor Targeting in Cancer Therapy, edited by Michel Page, 2002

Hormone Therapy in Breast and Prostate Cancer, edited by V. Craig Jordan and Barrington J. A. Furr, 2002

Tumor Models in Cancer Research, edited by Beverly A. Teicher, 2002

Tumor Suppressor Genes in Human Cancer, edited by David E. Fisher, 2001

Farnesyltransferase Inhibitors in Cancer, edited by Said M. Sebri and Andrew D. Hamilton, 2001

Platinum-Based Drugs in Cancer Therapy, edited by Lloyd R. Kelland and Nicholas P. Farrell, 2000

Apoptosis and Cancer Chemotherapy, edited by John A. Hickman and Caroline Dive, 1999

Signaling Networks and Cell Cycle Control: The Molecular Basis of Cancer and Other Diseases, edited by J. Silvio Gutkind, 1999

Antifolate Drugs in Cancer Therapy, edited by Ann L. Jackman, 1999

Antiangiogenic Agents in Cancer Therapy, edited by Beverly A. Teicher, 1999

Cancer Therapeutics: Experimental and Clinical Agents, edited by Beverly A. Teicher, 1997
APOPTOSIS, SENESCENCE, AND CANCER

Edited by

DAVID A. GEWIRTZ
Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA

SHAWN E. HOLT
Departments of Medicine, Pharmacology and Toxicology, Biochemistry and Massey Cancer Center, Virginia Commonwealth, Richmond, VA

STEVEN GRANT
Departments of Pathology, Human Genetics, Pharmacology and Toxicology, Biochemistry and Massey Cancer Center, Virginia Commonwealth, Richmond, VA

HUMANA PRESS
TOTOWA, NEW JERSEY
The goals of chemotherapy (and radiotherapy) are to eliminate tumor cell targets by promoting cell death. In recent years, a major focus has been placed on programmed cell death or apoptosis as the primary mechanism of cell killing. However, tumor cells may respond to various forms of treatment in diverse ways, only some of which culminate in cell death and loss of clonogenic survival. In addition to apoptosis, cell death may occur through mitotic catastrophe, autophagy (a subtype of apoptosis), or anoikis. Alternatively, cells may undergo either transient or prolonged growth arrest; in addition, senescence arrest or accelerated senescence is now recognized as a response to various treatments, which may also play a role in preventing cell transformation. Consequently, “permanent” growth arrest, possibly mediated through senescence, could contribute to loss of self-renewal capacity, particularly in solid tumors. The question of why some tumor cells within a population ultimately recover proliferative capacity (whether in cell culture, in xenograft models as a component of tumor growth delay, or in patients in relation to disease recurrence) remains an unresolved question in the fields of experimental chemotherapy and radiotherapy and a critical problem in the clinical treatment of malignancies. The possibility that surviving and recovering cells represent a resistant stem cell population has recently gained credence, although evidence in support of this hypothesis is far from conclusive.

The purpose of this book is to contribute to an understanding of the growth arrest and cell death pathways mediating the response to chemotherapy in tumor cells. The book is divided into six sections. The first reviews the major cell death pathways. The second develops the themes of telomeres, telomerase, and senescence in genetic stability and tumorigenesis. The third provides an in-depth dissection of the critical DNA damage and response signaling pathways. The fourth deals with the fundamental limitations on therapy conferred by drug resistance, as well as current approaches to circumvent or attenuate drug resistance. The fifth and sixth sections provide an analysis of our understanding of the responses to both conventional strategies and newly developed therapies against cancer.

It is our hope that this book will provide basic scientists and clinicians with a deeper and more thorough understanding of the cellular responses of malignant cells to common therapeutic modalities, which may determine the effectiveness of treatment, both in the initial phase of the disease and the latter stages, including recurrence and metastatic disease.

David A. Gewirtz
CONTENTS

Preface .. v
Contributors .. xi
Introduction and Overview .. xv

PART I: APOPTOSIS AND ALTERNATIVE MODES OF CELL DEATH
1 The Intrinsic Pathway of Apoptosis .. 3
 Scott H. Kaufmann
2 The Extrinsic Pathway of Apoptosis ... 31
 M. Stacey Ricci, and Wafik S. El-Deiry
3 Evaluating the Importance of Apoptosis and Other Determinants of Cell
 Death and Survival ... 55
 Bradly G. Wouters and Roland K. Chiu
4 Mitotic Catastrophe .. 73
 Fiorenza Ianzini and Michael A. Mackey
5 Autophagy and Autophagic Cell Death... 93
 Mojgan Djavaheri-Mergny, Joëlle Botti, and Patrice Codogno
6 Regulation and Function of Detachment-Induced Cell Death (Anoikis) in
 Cancer Progression and Metastasis.. 109
 David J. McConkey and Victor Bondar

PART II: TELOMERES AND TELOMERASE, SENESCENCE,
GENOMIC INSTABILITY, AND TUMORIGENESIS
7 Structure and Function of the Telomere.. 125
 Jay E. Johnson, and Dominique Broccoli
8 Overview of Senescence .. 145
 Ruben D. Ramirez
9 Contributions of Telomerase to Tumorigenesis .. 159
 Richard Possemato and William C. Hahn
10 The Role of Telomeres in Genomic Instability.. 173
 John P. Murnane

PART III: DNA DAMAGE RESPONSE, SIGNALING PATHWAYS,
AND TUMORIGENESIS
11 Overview of the DNA Damage Checkpoint: ATM and ATR 193
 Aude Dupré and Jean Gautier
12 Interactions Between Myc- and Cyclin-Dependent Kinase Inhibitors
 in Cancer .. 223
 Kirsteen H. Maclean, and John L. Cleveland
Contents

13 Interplay Between γH2AX and 53BP1 Pathways in DNA Double-Strand Break Repair Response .. 243
 Fatouros Chronis and Emmy P. Rogakou

14 DNA-Dependent Protein Kinase in Repair, Apoptosis, Telomere Maintenance, and Chemotherapy 265
 Lawrence F. Povirk

PART IV: RESISTANCE AND SENSITIZATION
15 Resistance/Signaling Pathways .. 281
 Paul Dent, David T. Curiel and Paul B. Fisher

16 Ceramide and Multidrug Resistance .. 299
 Myles C. Cabot

17 Chemo- and Radiosensitization Through Inhibition of PI3K/Akt Signaling ... 313
 Debra L. Smith, Laura K. Nolden, Gordon B. Mills, and Yiling Lu

18 The Advancement of Epidermal Growth Factor Receptor Inhibitors in Cancer Therapy ... 335
 Gregory W. Allen and Paul M. Harari

PART V: ESTABLISHED CANCER THERAPIES
19 Antimetabolites .. 361
 Janet A. Houghton

20 Topoisomerase I Poisons and Apoptotic Topoisomerase I-DNA Complexes ... 383
 Olivier Sordet, Yves Pommier, and Eric Solary

21 Perturbations of Cellular Functions by Topoisomerase II Inhibitors: All Roads Lead to Cell Death? ... 407
 Annette K. Larsen and Andrzej Skladanowski

22 The Significance of Poly-Targeting in Apoptosis Induction by Alkylating Agents and Platinum Drugs ... 423
 Jan M. Woynarowski and Barbara A. Woynarowska

23 Contributions of Apoptosis and Senescence to Cytotoxicity Produced by Microtubule-Stabilizing Agents 465
 Laura E. Klein and Susan Band Horwitz

24 Tyrosine Kinase Inhibitors ... 477
 Michael Deininger

PART VI: RECENT AND DEVELOPING CANCER THERAPIES
25 Monoclonal Antibodies in Lymphomas .. 511
 Richard R. Furman, John P. Leonard, Julian Decter, and Morton Coleman

26 Role of Apoptosis in Anti-Angiogenic Cancer Therapies 537
 Jennifer A. Doll, Jennifer E. Hobbs, and Gerald A. Soff
27 Photodynamic Therapy-Induced Apoptosis... 557
 Nancy L. Oleinick, Rachel L. Morris, and Anna-Liisa Nieminen
28 Modulation of TRAIL Signaling for Cancer Therapy 579
 Simone Fulda and Klaus-Michael Debatin

Index ... 593
Contributors

Gregory W. Allen • Department of Human Oncology, University of Wisconsin Medical School, Madison, WI
Victor Bondar • Department of Cancer Biology, Anderson Cancer Center, Houston, TX
Joëlle Botti • INSERM U756, Faculté de Pharmacie, Université Paris-Sud, France
Dominique Broccoli • Department of Laboratory Oncology Research, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, GA
Myles C. Cabot • The Department of Experimental Therapeutics, John Wayne Cancer Institute, Santa Monica, CA
Roland K. Chiu • Department of Radiation Oncology (Maastro Lab), GROW Research Institute, University of Maastricht, The Netherlands
Fatouros Chronis • B.S.R.C. «Alexander Fleming» Institute of Molecular Biology and Genetics, Vari, Greece
John L. Cleveland • Department of Cancer Biology, Scripps Research Institute, Jupiter, FL
Patrice Codogno • INSERM U756, Faculté de Pharmacie, Université Paris-Sud, France
Morton Coleman • Center for Lymphoma and Myeloma, Weill Medical College of Cornell University and the New York-Presbyterian Hospital, New York, NY
David T. Curiel • Department of Medicine, Pathology and Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, AL
Klaus-Michael Debatin • University Children’s Hospital, Ulm, Germany
Julian Decter • Center for Lymphoma and Myeloma, Weill Medical College of Cornell University and the New York-Presbyterian Hospital, New York, NY
Michael Deininger • Oregon Health and Science University Cancer Institute, Portland, OR
Paul Dent • Department of Biochemistry, Virginia Commonwealth University, Richmond, VA
Mojgan Djavaheri-Mergny • INSERM U756, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
Jennifer A. Doll • Northwestern University Feinberg School of Medicine, Department of Pathology, Chicago, IL
Aude Dupré • Columbia University, Department of Genetics and Development, New York, NY
Wafik S. El-Deiry • Departments of Medicine (Hematology/Oncology), Genetics and Pharmacology, University of Pennsylvania, Philadelphia, PA
Paul B. Fisher • Departments of Pathology, Neurosurgery and Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
Simone Fulda • University Children’s Hospital, Ulm, Germany
Contributors

RICHARD R. FURMAN • Center for Lymphoma and Myeloma, Weill Medical College of Cornell University and the New York-Presbyterian Hospital, New York, NY

JEAN GAUTIER • Columbia University, Department of Genetics and Development, New York, NY

WILLIAM C. HAHN • Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women’s Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, MA, and Broad Institute of Harvard and MIT, Cambridge, MA

PAUL M. HARARI • Department of Human Oncology, University of Wisconsin Medical School, Madison, WI

JENNIFER E. HOBBS • Northwestern University Feinberg School of Medicine, Department of Pathology, Chicago, IL

SUSAN B. HORWITZ • Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY

JANET A. HOUGHTON • Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH

FIORENZA IANZINI • Departments of Pathology, Biomedical Engineering, and Radiation Oncology, University of Iowa, Iowa City, IA

JAY E. JOHNSON • Department of Laboratory Oncology Research, Curtis and Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, GA

SCOTT H. KAUFMANN • Division of Oncology Research, Mayo Clinic and Department of Molecular Pharmacology, Mayo Graduate School, Rochester, MN

LAURA E. KLEIN • Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY

ANNETTE K. LARSEN • Group of Molecular and Clinical Cancer Therapeutics, INSERM U673 and Université Pierre et Marie Curie, Hôpital Saint-Antoine, Paris, France

JOHN P. LEONARD • Center for Lymphoma and Myeloma, Weill Medical College of Cornell University and the New York-Presbyterian Hospital, New York, NY

YILING LU • Anderson Cancer Center, Department of Molecular Therapeutics, Houston, TX

MICHAEL A. MACKEY • Departments of Biomedical Engineering and Pathology, University of Iowa, Iowa City, IA

KIRSTEEN H. MACLEAN • Departments of Biochemistry and Oncology (Molecular Therapeutics), St. Jude Children’s Research Hospital, Memphis, TN

DAVID J. McCONKEY • Department of Cancer Biology, Anderson Cancer Center, Houston, TX

GORDON B. MILLS • Department of Molecular Therapeutics, Anderson Cancer Center, Houston, TX

RACHEL L. MORRIS • Department of Radiation, Case Western Reserve University, Cleveland, OH

JOHN P. MURNANE • Radiation Oncology Research Laboratory, University of California, San Francisco, CA

ANNA-LIISA NIEMINEN • Case Comprehensive Cancer Center, and Department of Anatomy, Case Western Reserve University, Cleveland, OH
LAURA K. NOLDEN • Department of Molecular Therapeutics, Anderson Cancer Center, Houston, TX

NANCY L. OLEINICK • Department of Radiation and Department of Oncology and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH

YVES POMMIER • Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD

RICHARD POSSEMATO • Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women’s Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, MA, and Broad Institute of Harvard and MIT, Cambridge, MA

LAWRENCE F. POVIRK • Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA

RUBEN D. RAMIREZ • Internal Medicine Department, University of Texas Southwestern Medical Center at Dallas and Dallas Veterans Affairs Medical Center, Dallas, TX

M. STACEY RICCI • Departments of Medicine (Hematology/Oncology), Genetics and Pharmacology, University of Pennsylvania, Philadelphia, PA

EMMY P. ROGAKOU • B.S.R.C. «Alexander Fleming», Institute of Molecular Biology and Genetics, Vari, Greece

ANDRZEJ SKLADANOWSKI • Laboratory of Molecular and Cellular Pharmacology, Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland

DEBRA L. SMITH • Department of Molecular Therapeutics, Anderson Cancer Center, Houston, TX

GERALD A. SOFF • Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY

ERIC SOLARY • INSERM U517, IFR 100, Faculty of Medicine, Dijon, France

OLIVIER SORDET • Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD

BRADLY G. WOUTERS • Department of Radiation Oncology (Maastricht Lab), GROW Research Institute, University of Maastricht, The Netherlands

BARBARA A. WOYNAROWSKA • National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD

JAN M. WOYNAROWSKI • National Cancer Institute, National Institutes of Health, Bethesda, MD
The title of this book might suggest that one mode of cell death (apoptosis) and one mode of growth arrest (senescence) represent the critical elements of tumor cell responses to various forms of cancer therapy. However, a quick glance through the section and chapter headings will readily convey the range of possible responses to both conventional therapies, such as standard cytotoxic drugs and radiation, to more recent therapies, such as monoclonal antibodies and targeting of specific receptor and signaling pathways, to developing modalities, such as photodynamic therapy and approaches targeting the vascular system. With regard to senescence, in addition to the relatively recent realization that senescence is likely to mediate the growth arrest response to many therapeutic treatments and could potentially act as a rational drug response, a considerable section of this book has been devoted to the role of senescence in genomic instability and tumor development. In addition, the reader will find that the theme of genomic instability runs through other sections, such as the consideration of mitotic catastrophe, as well as regulatory functions of ataxia telangiectasia mutated (ATM)/ATM-related (ATR) and DNA-dependent protein kinase. Likewise, the relationship between c-myc and cyclin-dependent kinase inhibitors is considered in terms of tumor progression, as well as their relevance for cancer therapy and the promotion of apoptosis.

CELL DEATH PATHWAYS

For almost two decades, the cell death response to chemotherapy and radiation has focused almost exclusively on apoptosis. In view of the importance of apoptotic cell death, two introductory chapters in this section provide a detailed and learned overview of both the intrinsic and the extrinsic pathways of apoptosis. However, there is extensive evidence that apoptosis is not the only mode of cell death or possibly the primary mode of cell death in solid tumors. It is therefore of particular importance to review the approaches utilized to conclude that a particular mode of cell death is relevant to drug or radiation treatment.

It has been well established for many years that at least one other mode of cell death, that of mitotic catastrophe, is quite common, particularly in tumors that have been exposed to ionizing radiation. However, the basis for the cell “choosing” or preferring a particular mode of cell death is not understood, even at the most fundamental level. Relatively recently, at least one additional mode of cell death has been recognized, known as autophagy. Autophagy is a complex response because, unlike apoptosis or mitotic catastrophe, autophagy can function as a cytoprotective mechanism when initiated under certain modes of cell stress, such as nutrient deprivation. Finally, an area that is appropriately receiving renewed attention is a subspecies of apoptosis that is termed “anoikis,” or cell death subsequent to loss of adhesion to substratum. The ability of tumor cells to resist anoikis may provide the necessary survival advantage that permits a tumor cell to metastasize.
SENESCENCE GROWTH ARREST

Within the same time frame that autophagy has been recognized as a mode of cell death, stress-induced senescence (also known as premature or accelerated senescence) has been recognized as a unique mode of growth arrest. The uniqueness and signaling elements of this pathway has resisted facile dissection as the genetic elements that appear to be involved overlap quite closely with those involved in the G1 arrest pathway, specifically induction of p53 (although it is clear that p53-independent senescence also exists), p21^{wafl/cipl}, dephosphorylation of pRb- or Rb-related proteins such as p130 and p107, and suppression of E2F-mediated transcription. Analysis of the molecular elements involved in stress-induced senescence has also been hampered by reliance on a limited number of senescence markers, specifically senescence-associated β-galactosidase staining, cell morphology (flattening, enlargement, and granulation), and telomere dysfunction, which is in dramatic contrast to the multiple signaling and regulatory elements events that have been identified for death-related pathways. Of particular interest, the specific therapeutic targeting of telomeres to induce senescence may provide an under-explored, if not novel, targeted approach for cancer therapy.

DRUGS, MECHANISMS, AND RESISTANCE

Although a great deal of information has been published on the mechanism of action of different classes of antitumor drugs, the chapters in this book attempt to focus, in part, on the importance of different modes of cell death. We have attempted to cover major classical chemotherapeutic agents including the antimetabolites, platinum-based compounds and alkylating agents, topoisomerase I and topoisomerase II inhibitors, and microtubule poisons. In addition to these classical and conventional therapies, relatively new approaches such as antibody therapy, tyrosine kinase, and epithelial growth factor receptor (EGFR) inhibitors are described in detail in this book. Many “cutting edge” therapies are at various stages of development, including antiangiogenic agents and photodynamic therapy. Finally, the possibility of TRAIL as a therapeutic target has been considered, in particular because of its potential to be a highly selective target that is limited to tumor cells.

It is likely that any reader of this book will already be familiar with the difficulties encountered in cancer therapy, many of which are associated with various forms of resistance, including intrinsic mechanisms or those that develop in response to the treatment challenge. To address this issue, specific signaling pathways are considered both in the context of conferring resistance and for converting these pathways into potential targets for drug development and sensitization to existing therapies.

DNA DAMAGE RESPONSE

Although not all cancer therapies involve DNA damage, many of the traditional and conventional treatments do promote cellular stress, either directly through damage to DNA or indirectly through interference with the function of alternative targets. It was therefore considered to be of particular relevance to address specific components of the DNA damage response and signaling pathways, focusing on ATM/ATR, H2AX/53BP1, and DNA PK.
UNANSWERED QUESTIONS

What we still do not understand, despite our best efforts, is precisely how tumor cells “decide” on the nature of their response to these treatment modalities, especially related to recovery and/or resistance. It is generally thought that less severe “lesions” result in a transient growth arrest, and once such lesions are repaired (or the cell determines that the lesion is not “life-threatening”), growth will resume. Although without solid experimental evidence, it is possible to speculate that disease recurrence at the site of the primary tumor could be related to recovery after transient growth arrest; that is, one can consider this transient growth arrest to be analogous to tumor cell dormancy. A closely related question, one which we have not attempted to address in this book, is the nature of the signaling response that is required for proliferative recovery in “dormant” tumors. Finally, the basis for the therapeutic selectivity of many if not most of current conventional or more novel treatment modalities is still far from being fully elucidated.

The editors express their deep appreciation to all the contributors to this text, scientists, researchers, and clinicians who somehow managed to take the time and effort to provide the benefits of their expertise in specific fields of research to contribute chapters to this book. We also credit the editors at Humana Press for their endless patience with the process of developing this book.

We would like to dedicate this book to all those who have suffered and continue to suffer from the ravages of cancer in the hope that the information gathered in this text might provide some small element of guidance in the efforts of our scientific colleagues to defeat this disease.

David A. Gewirtz
Shawn E. Holt
Steven Grant