Pesticide Protocols
18. **Microbial Processes and Products**, edited by Jose Luis Barredo, 2005
17. **Microbial Enzymes and Biotransformations**, edited by Jose Luis Barredo, 2005
15. **Enzymes in Nonaqueous Solvents: Methods and Protocols**, edited by Evgeny N. Vulfson, Peter J. Halling, and Herbert L. Holland, 2001
13. **Supercritical Fluid Methods and Protocols**, edited by John R. Williams and Anthony A. Clifford, 2000
10. **Carbohydrate Biotechnology Protocols**, edited by Christopher Bucke, 1999
 5. **Biopesticides: Use and Delivery**, edited by Franklin R. Hall and Julius J. Menn, 1999
 4. **Natural Products Isolation**, edited by Richard J. P. Cannell, 1998
Preface

Pesticides are a broad class of bioactive compounds used in crop protection, food preservation, and human health. They differ from other chemical substances because they are spread deliberately into the environment. Presently, about 1000 active ingredients have been registered that can be grouped into more than 40 classes of chemical families. Exposure to pesticides through the most important routes of uptake (oral, dermal, and inhalation) depends on the physicochemical characteristics of the pesticide and the nature of the contact, varying with the edge, lifestyle, and working conditions. The level of pesticides in different environmental compartments—such as water, agricultural foods, and products of animal origin—has become a relevant issue. Moreover, analytical measurements of dermal exposure and exposure by inhalation have become as important as analytical measurements of internal dose.

Unlike other contaminants, pesticides may affect both workers and the general population as a result of the consumption of contaminated food and water, domestic use, and proximity to agricultural settings. Information about actual human exposure to pesticides has important uses, including informing risk assessments, helping predict the potential consequences of exposures, and developing exposure criteria for regulations and other public policy guidance.

Pesticide exposure can be measured through the biomonitoring of the parent compounds and/or metabolites in such body fluids as urine, blood, serum, and saliva, among others. Indoor exposure may take place through treated furniture, or such home structures as fitted carpets or wood-treated walls. Regarding outdoor exposure, the main sources are represented by spray drifts of pesticides from agricultural and industrial areas and by the atmospheric dispersal of pesticides evaporated from treated surfaces. Very little information is available on dermal and inhalation exposure to pesticides. Contamination of food represents one of the most pervasive sources of pesticide exposure for the general population.

Pesticide analysis has been affected by the recent detection of parent or metabolite compounds, thus driving the demand for techniques that can measure lower and lower levels of concentration. In recent years, criteria to support in a solid way the steps corresponding to the identification, confirmation, and quantification of the analyte have become more frequently used.

During the last decade, noticeable changes in multiresidue methods have taken place. Chromatography remains the workhorse technique for pesticides. The development of different types of injection techniques, columns, stationary phases, and detectors has allowed for the improvement in the sensitivity and selectivity of the analytical determinations. The availability in analytical laboratories of mass spectrometry detectors coupled to gas chromatography, as well as to liquid chromatography, has increased the degree of confidence in the identification of organic compounds. Other techniques, such as capillary electrophoresis, are promising
candidates for a relevant role in this area. The current use of powerful analytical tools coupled with the application of quality control/quality assurance criteria has resulted in an increase in the reliability of an analysis. However, special emphasis is needed on the development of multiresidue methods for the analysis of as many pesticides as possible in one analytical run.

Pesticide Protocols contains methods for the detection of specific compounds or their metabolites useful in biological monitoring and in studies of exposure via food, water, air, and skin. Liquid and gas chromatography coupled to mass spectrometry detection, and other classic detectors, are the most widely used techniques, although such others as capillary electrophoresis and immunochemical or radioimmunoassay methods are also proposed. Chapters cover the varied array of analytical techniques applied to the analysis of several families of pesticides. The extractions and cleanup procedures have been focused in order to use more automated and miniaturized methods, including solid-phase extraction, solid-phase micro-extraction, microwave-assisted extraction, or on-line tandem liquid chromatography (LC/LC) trace enrichment, among others.

All methods have been written by scientists experienced in pesticide analysis in different matrixes. Each chapter describes a specific method, giving the analytical information in sufficient detail that a competent scientist can apply it without having to consult additional sources. Our book will prove valuable as a general reference and guide for students and postgraduates, as well for researchers and laboratories alike.

We would like to express our personal gratitude to all the authors for the quality of their contributions. Thanks are also owed to Professor John Walker and to Humana Press for allowing us to edit this volume.

José L. Martínez Vidal
Antonia Garrido Frenich
Contents

Preface ... v
Contributors ... xi

PART I. ANALYTICAL METHODOLOGIES TO DETERMINE PESTICIDES
AND METABOLITES IN HUMAN FAT TISSUES AND BODY FLUIDS

1 Analysis of Endocrine Disruptor Pesticides in Adipose Tissue
 Using Gas Chromatography-Tandem Mass Spectrometry:
 Assessment of the Uncertainty of the Method
José L. Martínez Vidal, Antonia Garrido Frenich, Francisco J. Egea
 González, and Francisco J. Arrebola Liébanas .. 3

2 Determination of Pyrethroids in Blood Plasma and Pyrethroid/
 Pyrethrin Metabolites in Urine by Gas Chromatography-Mass
 Spectrometry and High-Resolution GC-MS
Gabriele Leng and Wolfgang Gries .. 17

3 A Multianalyte Method for the Quantification of Current-Use
 Pesticides in Human Serum or Plasma Using Isotope Dilution
 Gas Chromatography-High-Resolution Mass Spectrometry
Dana B. Barr, Roberto Bravo, John R. Barr, and Larry L. Needham 35

4 Application of Solid-Phase Disk Extraction Combined
 With Gas Chromatographic Techniques for Determination
 of Organochlorine Pesticides in Human Body Fluids
Adrian Covaci .. 49

5 A Comprehensive Approach for Biological Monitoring of Pesticides
 in Urine Using HPLC-MS/MS and GC-MS/MS
Dana B. Barr, Anders O. Olsson, Roberto Bravo, and Larry L. Needham ... 61

6 Urinary Ethylenethiourea as a Biomarker of Exposure
 to Ethylenebisdithiocarbamates
Silvia Fustinoni, Laura Campo, Sarah Birindelli, and Claudio Colosio 79

7 Analysis of 2,4-Dichlorophenoxyacetic Acid and 2-Methyl-4-
 Chloro-Phenoxyacetic Acid in Human Urine
Cristina Aprea, Gianfranco Sciarra, Nanda Bozzi, and Liana Lunghini 91

8 Determination of Herbicides in Human Urine by Liquid
 Chromatography-Mass Spectrometry With Electrospray Ionization
Isabel C. S. F. Jardim, Joseane M. Pozzebon,
 and Sonia C. N. Queiroz ... 105
Contents

PART I. BIOLOGICAL EXPOSURE ASSESSMENT

9 Analysis of Pentachlorophenol and Other Chlorinated Phenols in Biological Samples by Gas Chromatography or Liquid Chromatography–Mass Spectrometry
 Ji Y. Zhang ... 111

10 Analysis of 2,4-Dichlorophenoxyacetic Acid in Body Fluids of Exposed Subjects Using Radioimmunoassay
 Dietmar Knopp ... 119

11 A High-Throughput Screening Immunochemical Protocol for Biological Exposure Assessment of Chlorophenols in Urine Samples
 Mikaela Nichkova and M.-Pilar Marco ... 133

PART II. ASSESSMENT OF INHALATORY AND POTENTIAL DERMAL EXPOSURE

12 Assessment of Postapplication Exposure to Pesticides in Agriculture
 Joop J. van Hemmen, Katinka E. van der Jagt, and Derk H. Brouwer 149

13 Field Study Methods for the Determination of Bystander Exposure to Pesticides
 C. Richard Glass .. 165

14 Determination of Household Insecticides in Indoor Air by Gas Chromatography–Mass Spectrometry
 Edith Berger-Preiss and Lutz Elflein ... 179

15 Assessment of Dermal and Inhalatory Exposure of Agricultural Workers to Malathion Using Gas Chromatography–Tandem Mass Spectrometry
 Francisco J. Egea González, Francisco J. Arrebola Liébanas, and A. Marín ... 191

16 Pesticides in Human Fat and Serum Samples vs Total Effective Xenoestrogen Burden
 Patricia Araque, Ana M. Soto, M. Fátima Olea-Serrano, Carlos Sonnenschein, and Nicolas Olea ... 207

PART III. PESTICIDE ANALYSIS IN FOOD

17 Quality Criteria in Pesticide Analysis
 Antonia Garrido Frenich, José L. Martínez Vidal, Francisco J. Egea González, and Francisco J. Arrebola Liébanas ... 219

18 Immunoassay Methods for Measuring Atrazine and 3,5,6-Trichloro-2-Pyridinol in Foods
 Jeanette M. Van Emon and Jane C. Chuang .. 231

19 Quick, Easy, Cheap, Effective, Rugged, and Safe Approach for Determining Pesticide Residues
 Steven J. Lehotay ... 239
20 Determination of Organophosphorus Pesticide Residues in Vegetable Oils by Single-Step Multicartridge Extraction and Cleanup and by Gas Chromatography With Flame Photometric Detector

Alfonso Di Muccio, Anna M. Cicero, Antonella Ausili, and Stefano Di Muccio .. 263

21 Multiclass Pesticide Analysis in Vegetables Using Low-Pressure Gas Chromatography Linked to Tandem Mass Spectrometry

Francisco J. Arrebola Liébanas, Francisco J. Egea González, and Manuel J. González Rodríguez ... 273

22 Use of Matrix Solid-Phase Dispersion for Determining Pesticides in Fish and Foods

Steven A. Barker .. 285

23 Analysis of Fungicides in Fruits and Vegetables by Capillary Electrophoresis Mass Spectrometry

Yolanda Picó .. 297

24 Application of Supercritical Fluid Extraction for the Analysis of Organophosphorus Pesticide Residues in Grain and Dried Foodstuffs

Kevin N. T. Norman and Sean H. W. Panton ... 311

25 Application of Microwave-Assisted Extraction for the Analysis of Dithiocarbamates in Food Matrices

Euphemia Papadopoulou-Mourkidou, Emmanuil Nikolaos Papadakis, and Zisis Vryzas ... 319

26 Enantioselective Determination of α-Hexachlorocyclohexane in Food Samples by GCMS

Chia-Swee Hong and Shaogang Chu .. 331

PART IV. PESTICIDE ANALYSIS IN WATER

27 Automated Headspace Solid-Phase Microextraction and Gas Chromatography Mass Spectrometry for Screening and Determination of Multiclass Pesticides in Water

Taizou Tsutsumi, Mitsushi Sakamoto, Hiroyuki Kataoka, and Janusz Pawliszyn ... 343

28 Analysis of Herbicides in Water by On-Line In-Tube Solid-Phase Microextraction Coupled With Liquid Chromatography Mass Spectrometry

Hiroyuki Kataoka, Kurie Mitani, and Masahiko Takino .. 365

29 Coupled-Column Liquid Chromatography for the Determination of Pesticide Residues

Elbert Hogendoorn and Ellen Dijkman .. 383
30 On-Line Admicelle-Based Solid-Phase Extraction–Liquid Chromatography–Ionization Trap Mass Spectrometry for the Analysis of Quaternary Ammonium Herbicides in Drinking Water

Dolores Pérez-Bendito, Soledad Rubio, and Francisco Merino 405

31 Molecular Imprinted Solid-Phase Extraction for Cleanup of Chlorinated Phenoxyacids From Aqueous Samples

Claudio Baggiani and Cristina Giovannoli 421

32 Automated Trace Analysis of Pesticides in Water

Euphemia Papadopoulou-Mourkidou, John Patsias, and Anna Koukourikou ... 435

33 Gas Chromatography–High-Resolution Mass Spectrometry-Based Method for the Simultaneous Determination of Organotin Compounds in Water

Michael G. Ikonomou and Marc P. Fernandez 453

34 Determination of Triazine Herbicides and Degradation Products in Water by Solid-Phase Extraction and Chromatographic Techniques Coupled With Mass Spectrometry

Hassan Sabik and Roger Jeannot ... 467

35 An Optical Immunosensor for Pesticide Determination in Natural Waters

Sara Rodríguez-Mozaz, Maria J. López de Alda, and Damia Barceló 481

Index ... 491
Contributors

Cristina Aprea • Unità Funzionale di Igiene Industriale e Tossicologia Occupazionale (Department of Industrial Hygiene and Occupational Toxicology) Laboratorio di Sanità Pubblica, Azienda USL 7 (Public Health Laboratory, National Health Service Local Unit 7), Siena, Italy

Patricia Araque • Laboratory of Medical Investigations, Hospital Clínico, University of Granada, Granada, Spain

Francisco J. Arrebola Libanas • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain

Antonella Ausili • Department of Environmental Quality Monitoring, Istituto Centrale per La Ricerca Scientifica e Tecnologica Applicata al Mare (Institute for Scientific and Applied Marine Research), Rome, Italy

Claudio Baggiani • Dipartimento di Chimica Analitica, Università di Torino, Torino, Italy

Damia Barceló • Department of Environmental Chemistry, IIQAB-CSIC, Barcelona, Spain

Steven A. Barker • Analytical Systems Laboratories, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA

Dana B. Barr • National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA

John R. Barr • National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA

Edith Berger-Preiss • Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany

Sarah Birindelli • International Centre for Pesticides and Health Risk Prevention, Ospedale Universitario Luigi Sacco–Busto Garolfo, Milan, Italy

Nanda Bozzi • Unità Funzionale di Igiene Industriale e Tossicologia Occupazionale (Department of Industrial Hygiene and Occupational Toxicology) Laboratorio di Sanità Pubblica, Azienda USL 7 (Public Health Laboratory, National Health Service Local Unit 7), Siena, Italy

Roberto Bravo • National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA

Derk H. Brouwer • TNO Chemistry, Food and Chemical Risk Analysis, Zeist, The Netherlands

Laura Campo • Department of Occupational and Environmental Health, University of Milan and Ospedale Policlinico, Mangiagallie Regina Elena, Milan, Italy

Shaogang Chu • Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
Contributors

JANE C. CHUANG • Battelle, Columbus, OH
ANNA M. CICERO • Department of Environmental Quality Monitoring, Istituto Centrale per La Ricerca Scientifica e Tecnologica Applicata al Mare (Institute for Scientific and Applied Marine Research), Rome, Italy
CLAUDIO COLOSIO • International Centre for Pesticides and Health Risk Prevention, Ospedale Universitario Luigi Sacco–Busto Garolfo, Milan, Italy
ADRIAN COVACI • Toxicological Center, University of Antwerp, Universiteits-Plein, Wilrijk, Belgium
ALFONSO DI MUCCIO • Formerly at Laboratory of Applied Toxicology, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
STEFANO DI MUCCIO • Department of Environmental Quality Monitoring, Istituto Centrale per La Ricerca Scientifica e Tecnologica Applicata al Mare (Institute for Scientific and Applied Marine Research), Rome, Italy
ELLEN DIJKMAN • Laboratory for Analytical Chemistry, National Institute for Public Health and The Environment, Bilthoven, The Netherlands
FRANCISCO J. EGÉA GONZÁLEZ • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain
LUTZ ELFLEIN • Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
MARC P. FERNÁNDEZ • Regional Contaminants Laboratory, Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
SILVIA FUSTINONI • Department of Occupational and Environmental Health, University of Milan and Ospedale Policlinico, Mangiagallie Regina Elena, Milan, Italy
ANTONIA GARRIDO FRENICH • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain
Cristina Giovannoli • Dipartimento di Chimica Analitica, Università di Torino, Torino, Italy
C. RICHARD GLASS • Environmental Biology Group, Central Science Laboratory, York, UK
MANUEL J. GONZÁLEZ RODRÍGUEZ • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain
WOLFGANG GRIES • Department SUA–GHA–GSS, Institute of Biomonitoring, Bayer Industry Services GmbH and CoOHG, Leverkusen, Germany
ELBERT HOGENDOORN • Laboratory for Analytical Chemistry, National Institute for Public Health and The Environment, Bilthoven, The Netherlands
CHIA-SWEE HONG • Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY
MICHAEL G. IKONOMOU • Regional Contaminants Laboratory, Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, British Columbia, Canada
ISABEL C. S. F. JARDIM • Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
ROGER JEANNOT • Service Analyse et Caractérisation Minérale, BRGM, Orleans, France
Contributors

HIROYUKI KATAOKA • Laboratory of Applied Analytical Chemistry, Department of Biological Pharmacy, School of Pharmacy, Shujitsu University, Okayama, Japan

DIETMAR KNOPP • Institute of Hydrochemistry and Chemical Balneology, Technical University Munich, München, Germany

ANNA KOUKOURIKOU • Pesticide Science Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece

STEVEN J. LEHOTAY • Agricultural Research Service, US Department of Agriculture, Eastern Regional Research Center, Wyndmoor, PA

GABRIELE LENG • Department SUA–GHA–GSS, Institute of Biomonitoring, Bayer Industry Services GmbH and CoOHG, Leverkusen, Germany

MÁRICA J. LÓPEZ DE ALDA • Department of Environmental Chemistry, IIQAB-CSIC, Barcelona, Spain

LIANA LUNGHINI • Unità Funzionale di Igiene Industriale e Tossicologia Occupazionale (Department of Industrial Hygiene and Occupational Toxicology) Laboratorio di Sanità Pubblica, Azienda USL 7 (Public Health Laboratory, National Health Service Local Unit 7), Siena, Italy

M. PILAR MARCO • Department of Biological Organic Chemistry, IIQAB-CSIC, Barcelona, Spain

A. MARÍN • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain

JOSÉ L. MARTÍNEZ VIDAL • Department of Analytical Chemistry, Faculty of Sciences, University of Almería, Almería, Spain

FRANCISCO MERINO • Department of Analytical Chemistry, Faculty of Sciences, University of Córdoba, Córdoba, Spain

KURIE MITANI • Laboratory of Applied Analytical Chemistry, Department of Biological Pharmacy, School of Pharmacy, Shujitsu University, Okayama, Japan

LARRY L. NEEDHAM • Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, GA

MIKAELA NICHKHOVA • Department of Biological Organic Chemistry, IIQAB-CSIC, Barcelona, Spain

KEVIN N. T. NORMAN • Central Science Laboratory, York, UK

M. FÁTIMA OLEA-SERRANO • Department of Nutritional and Food Sciences, University of Granada, Granada, Spain

NICOLÁS OLEA • Lab of Medical Investigations, Hospital Clínico, University of Granada, Granada, Spain

ANDERS O. OLSSON • National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA

SEAN H. W. PANTON • Central Science Laboratory, York, UK

EMMANUIL NIKOLAOS PAPADAKIS • Pesticide Science Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece

EUHPEMIA PAPADOPOULOU-MOURKIDOU • Pesticide Science Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece