Antisense Therapeutics
113 Multiple Myeloma: Methods and Protocols, edited by Ross D. Brown and P. Joy Ho, 2005
112 Molecular Cardiology: Methods and Protocols, edited by Zhongjie Sun, 2005
111 Chemosensitivity: Volume 2, In Vivo Models, Imaging, and Molecular Regulators, edited by Rosalyn D. Blumethal, 2005
110 Chemosensitivity: Volume 1, In Vitro Assays, edited by Rosalyn D. Blumethal, 2005
109 Adoptive Immunotherapy, Methods and Protocols, edited by Burkhard Ludewig and Matthias W. Hoffman, 2005
108 Hypertension, Methods and Protocols, edited by Jérôme P. Fennell and Andrew H. Baker, 2005
105 Developmental Hematopoiesis: Methods and Protocols, edited by Margaret H. Baron, 2005
104 Stroke Genomics: Methods and Reviews, edited by Simon J. Read and David Virley, 2005
103 Pancreatic Cancer: Methods and Protocols, edited by Gloria H. Su, 2005
102 Autoimmunity: Methods and Protocols, edited by Andras Perl, 2004
101 Cartilage and Osteoarthritis: Volume 2, Structure and In Vivo Analysis, edited by Frédéric De Ceuninck, Massimo Sabatini, and Philippe Pastoureau, 2004
100 Cartilage and Osteoarthritis: Volume 1, Cellular and Molecular Tools, edited by Massimo Sabatini, Philippe Pastoureau, and Frédéric De Ceuninck, 2004
99 Pain Research: Methods and Protocols, edited by David Z. Luo, 2004
98 Tumor Necrosis Factor: Methods and Protocols, edited by Angelo Corti and Pietro Ghezzi, 2004
96 Hepatitis B and D Protocols: Volume 2, Immunology, Model Systems, and Clinical Studies, edited by Robert K. Hamatake and Johnson Y. N. Lau, 2004
95 Hepatitis B and D Protocols: Volume 1, Detection, Genotypes, and Characterization, edited by Robert K. Hamatake and Johnson Y. N. Lau, 2004
94 Molecular Diagnosis of Infectious Diseases, Second Edition, edited by Jochen Decker and Udo Reischl, 2004
93 Anticoagulants, Antiplatelets, and Thrombolytics, edited by Shaker A. Mousa, 2004
92 Molecular Diagnosis of Genetic Diseases, Second Edition, edited by Rob Elles and Roger Mountford, 2004
91 Pediatric Hematology: Methods and Protocols, edited by Nicholas J. Goulden and Colin G. Steward, 2003
90 Suicide Gene Therapy: Methods and Reviews, edited by Caroline J. Springer, 2004
88 Cancer Cell Culture: Methods and Protocols, edited by Simon P. Langdon, 2003
85 Novel Anticancer Drug Protocols, edited by John K. Buolamwini and Alex A. Adjei, 2003
84 Opioid Research: Methods and Protocols, edited by Zhizhong Z. Pan, 2003
83 Diabetes Mellitus: Methods and Protocols, edited by Sabire Özcan, 2003
82 Hemoglobin Disorders: Molecular Methods and Protocols, edited by Ronald L. Nagel, 2003
Antisense Therapeutics

Second Edition

Edited by

M. Ian Phillips, PhD, DSc
Vice President for Research
University of South Florida, Tampa, FL

Foreword by

Stanley T. Crooke, MD, PhD
Isis Pharmaceuticals Inc., Carlsbad, CA

Humana Press Totowa, New Jersey
Foreword

We are now more than 15 years into a large-scale experiment to determine the viability of antisense technology. The challenges of creating a new pharmacological drug discovery platform are prodigious, requiring sizeable investments, long-term commitment, insight, and perseverance. For antisense technology to progress, advances in understanding the behavior of the receptor, RNA, and the behavior of the drugs, oligonucleotide analogs, were necessary. A new medicinal industry, the medicinal industry of oligonucleotides, had to be invented, and numerous drug development challenges—such as creating efficient manufacturing and analytical processes and formulations—had to be overcome. All of those advances then needed to be focused in drug candidates designed to interact with specific targets and to be effective in patients with specific diseases. This has taken time and a good bit of money and although the progress in the technology has been gratifying, there have, of course, been failures of individual clinical trials and individual drugs along the way.

What have we learned? Antisense technology works. Oligonucleotide analogs with a reasonable drug-dependent property can be synthesized and used to inhibit gene function through a variety of antisense mechanisms. Antisense drugs distribute to a wide range of tissues and reduce the expression of targets in a dose fashion consistent with the pharmaceutics of the drugs. First-generation antisense drugs are sufficient for relatively severe indications and second-generation drugs are performing significantly better. Moreover, these drugs are effective by a wide variety of routes including intravenous, subcutaneous, intradermal, rectal, and aerosol, and progress in oral delivery has been reported. Today numerous clinical trials in a wide range of diseases using a variety of oligonucleotide chemistries and antisense mechanisms are in progress.

In this year alone, positive clinical data in rheumatoid arthritis, diabetes, hyperlipidemia, cancer, and other diseases have been reported.

In this edition of Antisense Therapeutics, a number of approaches to antisense and therapeutic areas are discussed, as well as specific diagnostic opportunities. That the breadth of activities presented in this volume is as impressive as it is and yet does not begin to cover all of the work in progress, underscores the range of utility and potential value of antisense technology.
Nevertheless, despite antisense being an accepted tool that has facilitated better understanding of biological systems, much remains to be done before the true potential of the technology for therapeutic purposes can be defined. What this volume emphasizes, however, is that exponential progress in defining the long-term roles and value of antisense-based therapeutics is being made.

We look forward to the continued evolution of the technology.

Stanley T. Crooke, MD, PhD
Preface

This is the second edition of *Antisense Therapeutics*. The first edition was edited by Sudhir Agrawal and published in 1996. At that time there was no therapy based on antisense, but plenty of promise for the highly specific targeting of genes that cause disease. Antisense oligonucleotides were first reported as viral replication inhibitors by Paul Zamecnik and Mary Stephenson in 1978. Although this was excellent work, nothing much happened until new procedures for synthesizing DNA sequences were developed. Once oligonucleotides were easy to make, more and more studies were published in the 1980s, most of which were directed to cells in culture. In the early 1990s antisense oligonucleotides were increasingly tested in vivo. There were many controversies and a great deal of concern about backbone modification of the phosphodiester bridges that link the DNA bases. To protect against breakdown by nucleases in cells or blood, phosphorothioate oligonucleotides were adopted. In 1998 a phosphorothioated antisense agent was the first FDA-approved antisense therapy. Vitavene™, developed by Isis Pharmaceuticals, made antisense therapeutics a reality.

Since then, the complete sequencing of the human genome in April, 2003 has demonstrated the presence of a vast number of targets for antisense oligonucleotides. So we now have thousands of targets, hundreds of preclinical animal studies, and some 20 clinical trials ongoing. Any successful trial with an antisense compound will open a floodgate of new therapies for a panoply of diseases.

This second edition of *Antisense Therapeutics* deals less with the basic science of antisense and more with the actual therapeutic applications. For that reason it is organized into disease states.

I thank the authors for their patience and their strong contributions. Since this book was being edited at a time when I moved from the University of Florida to the University of South Florida, I ended up with two secretaries. I would like to thank Ms. Gayle Butters at the University of Florida and Mr. Eric J. Wheeler at the University of South Florida for their essential help. I am also grateful to Craig Adams at Humana Press for his patience.

M. Ian Phillips, PhD, DSc
Contents

Foreword... v
Preface ... vii
Contributors ... xi

Part I. Introduction
1 Antisense Therapeutics: A Promise Waiting to be Fulfilled
 M. Ian Phillips .. 3
2 Antisense Inhibition: Oligonucleotides, Ribozymes, and siRNAs

Part II. Cardiovascular
3 Local Application of Antisense for Prevention of Restenosis
 Patrick L. Iversen, Nicholas Kipshidze, Jeffrey W. Moses, and Martin B. Leon 37
4 Antisense Therapeutics for Hypertension:
 Targeting the Renin–Angiotensin System
 M. Ian Phillips and Birgitta Kimura .. 51
5 Antisense Strategies for the Treatment of Heart Failure
 Sian E. Harding, Federica del Monte, and Roger J. Hajjar 69

Part III. Cancer
6 Clinical Studies of Antisense Oligonucleotides for Cancer Therapy
 Rosanne M. Orr and F. Andrew Dorr .. 85
7 Antisense Therapy in Clinical Oncology:
 Preclinical and Clinical Experiences
 Ingo Tamm ... 113
8 Radionuclide–Peptide Nucleic Acid Diagnosis and Treatment of Pancreatic Cancer
9 Suppression of Pancreatic and Colon Cancer Cells by Antisense K-ras RNA Expression Vectors
Kazunori Aoki, Shumpei Ohnami, and Teruhiko Yoshida........... 193

10 Induction of Tumor Cell Apoptosis and Chemosensitization by Antisense Strategies
Manuel Rieber and Mary Strasberg-Rieber 205

11 Utility of Antioncogene Ribozymes and Antisense Oligonucleotides in Reversing Drug Resistance
Tadao Funato ... 215

PART IV. BLOOD–BRAIN BARRIER
12 Transport of Antisense Across the Blood–Brain Barrier
Laura B. Jaeger and William A. Banks ... 237

PART V. DERMAL
13 Transdermal Delivery of Antisense Oligonucleotides
Rhonda M. Brand and Patrick L. Iversen 255

PART VI. DRUGS
14 Antisense Strategies for Redirection of Drug Metabolism:
Using Paclitaxel as a Model
Vikram Arora .. 273

PART VII. GASTROINTESTINAL
15 Antisense Oligonucleotide Treatment of Inflammatory Bowel Diseases
Bruce R. Yacyshyn .. 295

PART VIII. HEPATITIS
16 Optimizing Electroporation Conditions for the Intracellular Delivery of Morpholino Antisense Oligonucleotides Directed Against the Hepatitis C Virus Internal Ribosome Entry Site
Ronald Jubin .. 309

Index .. 323
Contributors

NARIMAN V. AMIRKHANOV • Departments of Biochemistry and Molecular Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
KAZUNORI AOKI • Section for Studies on Host-Immune Response, National Cancer Center Research Institute, Tokyo, Japan
VIKRAM ARORA • Research and Development, AVI BioPharma, Corvallis, OR
MOHAN R. ARUVA • Department of Radiology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
WILLIAM A. BANKS • GRECC, VA Medical Center St. Louis, Department of Internal Medicine, St. Louis University, St. Louis, MO
RHONDA M. BRAND • Division of Emergency Medicine, Evanston Northwestern Healthcare, and Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL
ATIT CHAKRABARTI • Departments of Biochemistry and Molecular Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
STANLEY T. CROOKE • Chairman and CEO, ISIS Pharmaceuticals Inc., Carlsbad, CA
FEDERICA DEL MONTE • Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
F. ANDREW DORR • Salmedix Inc., San Diego, CA
TADAO FUNATO • Division of Molecular Diagnostics, Tohoku University School of Medicine, Sendai, Japan
ROGER J. HAJJAR • Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
SIAN E. HARDING • National Heart and Lung Institute, Imperial College, London, UK
PATRICK L. IVERSEN • AVI BioPharma, Corvallis, OR
LAURA B. JAEGER • Department of Pharmacological and Physiological Science, St. Louis University, St. Louis, MO
RONALD JUBIN • Department of Antiviral Therapy, Schering Plough Research Institute, Kenilworth, NJ
BIRGITTA KIMURA • Department of Anthropology, University of Florida, Gainesville, FL
Contributors

Nicholas Kipshidze • Lenox Hill Heart and Vascular Institute, Cardiovascular Research Foundation, Lenox Hill Hospital, New York, NY
Martin B. Leon • Lenox Hill Heart and Vascular Institute, Cardiovascular Research Foundation, Lenox Hill Hospital, New York, NY
Jeffrey W. Moses • Lenox Hill Heart and Vascular Institute, Cardiovascular Research Foundation, Lenox Hill Hospital, New York, NY
Shumpei Ohnami • Central RI Laboratory, National Cancer Center Research Institute, Tokyo, Japan
Rosanne M. Orr • Cancer Research UK Centre for Cancer Therapeutic, The Institute of Cancer Research, Sutton, Surrey, UK
M. Ian Phillips • Vice President for Research, Office of Research, University of South Florida, Tampa, FL
Wenyi Qin • Department of Surgery, University of Missouri, Columbia, MO
Ponugoti S. Rao • Department of Radiology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
Manuel Rieber • Tumor Cell Biology Laboratory, Center of Microbiology and Cell Biology, IVIC, Caracas, Venezuela
Willis K. Samson • Department of Pharmacological and Physiological Science, St. Louis University, St. Louis, MO
Edward R. Sauter • Department of Surgery, University of Missouri, Columbia, MO
Mary Strasberg-Rieber • Tumor Cell Biology Laboratory, Center of Microbiology and Cell Biology, IVIC, Caracas, Venezuela
Ingo Tamm • Department of Hematology and Oncology, Charite, Campus Virchow, Humboldt University of Berlin, Berlin, Germany
Meghan M. Taylor • Department of Pharmacological and Physiological Science, St. Louis University, St. Louis, MO
Mathew L. Thakur • Department of Radiology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
Xiaobing Tian • Departments of Biochemistry and Molecular Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
Eric Wickstrom • Departments of Biochemistry and Molecular Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
Bruce R. Yacyszyn • Louis Stokes VA Hospital and Case Western Reserve University, Cleveland, OH
Teruhiko Yoshida • Genetics Division, National Cancer Center Research Institute, Tokyo, Japan
Y. Clare Zhang • Department of Pediatrics, University of South Florida, St. Petersburg, FL
Weizhu Zhu • Department of Surgery, University of Missouri, Columbia, MO