Transgenic Plants
John M. Walker, Series Editor

300 Protein Nanotechnology: Protocols, Instrumentation, and Applications, edited by Tuân Vo-Dinh, 2005
299 Amyloid Proteins: Methods and Protocols, edited by Einar M. Sigurdsson, 2005
298 Peptide Synthesis and Application, edited by John Howl, 2005
297 Forensic DNA Typing Protocols, edited by Angel Carracedo, 2005
296 Cell Cycle Protocols, edited by Tim Humphrey and Gavin Brooks, 2005
294 Cell Migration: Developmental Methods and Protocols, edited by Jun-Lin Guan, 2005
293 Laser Capture Microdissection: Methods and protocols, edited by Graeme I. Murray and Stephanie Curran, 2005
292 DNA Viruses: Methods and Protocols, edited by Paul M. Lieberman, 2005
291 Molecular Toxicology Protocols, edited by Phouthone Keohavong and Stephen G. Grant, 2005
290 Basic Cell Culture, Third Edition, edited by Cheryl D. Helgason and Cindy Miller, 2005
289 Epidermal Cells, Methods and Applications, edited by Kursad Turksen, 2004
288 Oligonucleotide Synthesis, Methods and Applications, edited by Piet Herdewijn, 2004
287 Epigenetics Protocols, edited by Trygve O. Tollefsbol, 2004
286 Transgenic Plants: Methods and Protocols, edited by Leandro Peña, 2004
285 Cell Cycle Control and Dysregulation Protocols: Cyclins, Cyclin-Dependent Kinases, and Other Factors, edited by Antonio Giordano and Gaetano Romano, 2004
283 Bioconjugation Protocols, edited by Christof M. Niemeyer, 2004
282 Apoptosis Methods and Protocols, edited by Hugh J. M. Brady, 2004
280 Checkpoint Controls and Cancer, Volume 1: Reviews and Model Systems, edited by Axel H. Schönhthal, 2004
277 Trinucleotide Repeat Protocols, edited by Yoshinori Kohwi, 2004
276 Capillary Electrophoresis of Proteins and Peptides, edited by Mark A. Strege and Avinash L. Lagu, 2004
275 ChemoInformatics, edited by Jürgen Bajorath, 2004
274 Photosynthesis Research Protocols, edited by Robert Carpenter, 2004
273 Platelets and Megakaryocytes, Volume 2: Perspectives and Techniques, edited by Jonathan M. Gibbins and Martyn P. Mahaut-Smith, 2004
272 Platelets and Megakaryocytes, Volume 1: Functional Assays, edited by Jonathan M. Gibbins and Martyn P. Mahaut-Smith, 2004
271 B Cell Protocols, edited by Hua Gu and Klaus Rajewsky, 2004
270 Parasite Genomics Protocols, edited by Sara E. Melville, 2004
269 Vaccinia Virus and Poxvirology: Methods and Protocols, edited by Stuart N. Isaacs, 2004
266 Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews, edited by Neil Woodford and Alan Johnson, 2004
265 RNA Interference, Editing, and Modification: Methods and Protocols, edited by Jonatha M. Gott, 2004
264 Protein Arrays: Methods and Protocols, edited by Eric Fung, 2004
262 Genetic Recombination Protocols, edited by Alan S. Waldman, 2004
261 Protein–Protein Interactions: Methods and Applications, edited by Haian Fu, 2004
258 Gene Expression Profiling: Methods and Protocols, edited by Richard A. Shinkets, 2004
257 mRNA Processing and Metabolism: Methods and Protocols, edited by Daniel R. Schoenberg, 2004
Transgenic Plants

Methods and Protocols

Edited by

Leandro Peña

Instituto Valenciano de Investigaciones Agrarias,
Valencia, Spain
Preface

The aim of *Transgenic Plants: Methods and Protocols* is to provide a source of information to guide the reader through a wide range of frequently used, broadly applicable, and easily reproducible techniques involved in the generation of transgenic plants. Its step-by-step approach covers a series of methods for genetically transforming plant cells and tissues, and for recovering whole transgenic plants from them. The volume then moves on to the use of selectable and reporter markers, positive selection, marker elimination after recovery of transgenic plants, and the analysis of transgene integration, expression, and localization in the plant genome. Although contributors usually refer to model plants in most chapters, the protocols described herein should be widely applicable to many plant species. The last two sections are devoted to methods of risk assessment and to exploring the current and future applications of transgenic technology in agriculture and its social implications in a case study.

Transgenic Plants: Methods and Protocols is divided into six major sections plus an introduction, comprising 27 chapters. Part I, the Introduction, is a review of the past, present, and perspectives of the transgenic plants, from the discovery of *Agrobacterium tumefaciens* as a feasible transformation vector, to its use as a tool to study gene expression and function, and the current and possible future applications of this technology in agriculture, industry, and medicine. Part II covers the most commonly used transformation systems, including *Agrobacterium tumefaciens, Agrobacterium rhizogenes*, particle bombardment, electroporation, floral dip, and chloroplast transformation. Part III covers regeneration of whole transgenic plants by both organogenesis and somatic embryogenesis from different explant cells/tissues and from such diverse plant species as tomato, cassava, conifers, and citrus. Part IV covers the use of selectable and reporter markers, exemplified by the utilization of the *nptII* and *bar* genes for wheat transformation, and by β-glucuronidase (GUS) and green fluorescent protein (GFP) detection and quantification, respectively. Positive selection (for maize transformation) is also described as an alternative to the use of antibiotic and herbicide resistance genes as selectable markers. Also covered in this section is the controlled excision and removal of marker genes from both nuclei and plastids once transgenic shoots have been efficiently generated. Part V treats the study of transgene copy number and organization by quantitative real-time polymerase chain reaction (PCR), and the analysis of transgene expression by Northern and dot-blot hybridizations using nonradioactive probing methods, by reverse transcription (RT)-PCR, and by
RNA *in situ* hybridization. Also described is the use of matrix attachment regions (MARs) flanking the transgenes to obtain predictable and stable expression of the transgenic traits. Fluorescence *in situ* hybridization (FISH) is described as a method to map transgenes physically in specific plant chromosome regions. This section also covers the use of thermal asymmetric interlaced (TAIL)-PCR to amplify (and precisely determine by sequencing) genomic sequences flanking transgene insertions. Part VI covers risk assessment methods for studying *Agrobacterium* persistence in plant tissues and to investigate the possibility of transgene dispersal through pollen. Part VII provides an overview of the current and next generations of transgenic crops based not only in the most recent scientific literature, but also in patent applications. Social implications of the transgenic crops are exemplified by the development and impact of the virus-resistant transgenic papayas in Hawaii, Jamaica, and Venezuela.

Transgenic Plants: Methods and Protocols has been planned, written, and edited with the intention of being useful for those beginners and experienced scientists looking for a laboratory manual covering all aspects of plant genetic transformation. I greatly hope you will find it helpful.

I would like to thank the staff of Humana Press, series editor John Walker, and the authors for all their effort and for being so supportive and patient.

Leandro Peña
Contents

Preface .. v
Contributors .. xi

PART I. INTRODUCTION

1. Transgenic Plants: An Historical Perspective
 Luis Herrera-Estrella, June Simpson,
 and Miguel Martínez-Trujillo .. 3

PART II. TRANSFORMATION

2. Plant Transformation: Agrobacterium-Mediated Gene Transfer
 Abhaya M. Dandekar and Henry J. Fisk ... 35

3. Production of Hairy Root Cultures and Transgenic Plants
 by Agrobacterium rhizogenes-Mediated Transformation
 Mary C. Christey and Robert H. Braun ... 47

4. Stable Transformation of Plant Cells by Particle Bombardment/Biolistics
 Julie R. Kikkert, José R. Vidal, and Bruce I. Reisch ... 61

5. Electroporation: Introduction and Expression of Transgenes in Plant Protoplasts
 Henry J. Fisk and Abhaya M. Dandekar ... 79

 Steven J. Clough .. 91

7. Production of Transgenic Crops by the Floral-Dip Method
 Ian S. Curtis ... 103

8. Chloroplast Genetic Engineering to Improve Agronomic Traits
 Henry Daniell, Oscar N. Ruiz, and Amit Dhingra ... 111

PART III. REGENERATION

9. Organogenesis From Transformed Tomato Explants
 Anne Frary and Joyce Van Eck ... 141

10. Genetic Transformation of Conifers Utilizing Somatic Embryogenesis
 Krystyna Klimaszewska, Robert G. Rutledge,
 and Armand Séguin .. 151
11. Regeneration of Transgenic Cassava
 From Transformed Embryogenic Tissues
 Peng Zhang and Johanna Puonti-Kaerlas ... 165

12. Genetic Transformation of Mature Citrus Plants
 Magdalena Cervera, José Juárez, Luis Navarro, and Leandro Peña ... 177

PART IV. SELECTION

13. Selectable Markers: Antibiotic and Herbicide Resistance
 Julia L. Goodwin, Gabriela M. Pastori, Michael R. Davey, and Huw D. Jones ... 191

14. Histochemical and Fluorometric Assays for uidA (GUS) Gene Detection
 Magdalena Cervera ... 203

15. Green Fluorescent Protein Quantification in Whole Plants
 Matthew D. Halfhill, Reginald J. Millwood, and C. Neal Stewart, Jr. ... 215

16. Positive Selection
 Allan Wenck and Geneviève Hansen ... 227

17. Elimination of Marker Genes From Transgenic Plants Using MAT Vector Systems
 Hiroyasu Ebinuma, Koichi Sugita, Saori Endo, Etsuko Matsunaga, and Keiko Yamada 237

18. Simple and Efficient Removal of Marker Genes From Plastids by Homologous Recombination
 Anil Day, Vasumathi Kode, Panagiotis Madesis, and Siriluck Iamtham ... 255

PART V. TRANSGENE INTEGRATION, EXPRESSION, AND LOCALIZATION

19. The Study of Transgene Copy Number and Organization
 David J. Ingham .. 273

20. Analysis of Gene Expression in Transgenic Plants
 Andrew F. Page and Subhash C. Minocha .. 291

21. Transgene Integration: Use of Matrix Attachment Regions
 George C. Allen, Steven Spiker, and William F. Thompson................................. 313

22. Fluorescence In Situ Hybridization to Localize Transgenes in Plant Chromosomes
 Wendy A. Harwood, Lorelei J. Bilham, Silvia Travella, Haroldo Salvo-Garrido, and John W. Snape 327
23. Amplification of Genomic Sequences Flanking T-DNA Insertions by Thermal Asymmetric Interlaced Polymerase Chain Reaction
Yao-Guang Liu, Yuanlin Chen, and Qunyu Zhang .. 341

PART VI. RISK ASSESSMENT

24. *Agrobacterium* Persistence in Plant Tissues After Transformation
Jaime Cubero and María M. López .. 351

25. Transgene Dispersal Through Pollen
Laura C. Hudson, Matthew D. Halfhill, and C. Neal Stewart, Jr. 365

PART VII. TRANSGENIC CROPS

26. Transgenic Crops: *The Current and Next Generations*
Jim M. Dunwell .. 377

27. Comparative Development and Impact of Transgenic Papayas in Hawaii, Jamaica, and Venezuela
Gustavo Fermín, Paula Tennant, Carol Gonsalves, David Lee, and Dennis Gonsalves ... 399

Index .. 431
Contributors

GEORGE C. ALLEN • Department of Crop Science, North Carolina State University, Raleigh, NC
LORELEI J. BILHAM • Department of Crop Genetics, John Innes Centre, Norwich, UK
ROBERT H. BRAUN • New Zealand Institute for Crop & Food Research, Christchurch, New Zealand
MAGDALENA CERVERA • Department of Plant Protection and Biotechnology, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
YUANLIN CHEN • College of Life Science, South China Agricultural University, Guangzhou, China
MARY C. CHRISTEY • New Zealand Institute for Crop & Food Research, Christchurch, New Zealand
STEVEN J. CLOUGH • USDA-ARS, Department of Crop Science, University of Illinois, Urbana, IL
JAIME CUBERO • Department of Plant Protection, INIA, Madrid, Spain
IAN S. CURTIS • Department of Biotechnology, National Institute of Agrobiological Sciences, Tsukuba, Japan
ABHAYA M. DANDEKAR • Department of Pomology, University of California, Davis, CA
HENRY DANIELL • Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL
MICHAEL R. DAVEY • Plant Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
ANIL DAY • School of Biological Sciences, University of Manchester, Manchester, UK
AMIT DHINGRA • Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL
JIM M. DUNWELL • Department of Agricultural Botany, School of Plant Sciences, The University of Reading, Reading, UK
HIROYASU EBINUMA • Pulp and Paper Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan
SAORI ENDO • Pulp and Paper Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan
GUSTAVO FERMIÑ • Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
Contributors

HENRY J. FISK • Department of Pomology, University of California, Davis, CA
ANNE FRARY • Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
CAROL GONSAVES • Pacific Basin Agricultural Research Center, Hilo, HI
DENNIS GONSAVES • Pacific Basin Agricultural Research Center, Hilo, HI
JULIA L. GOODWIN • Crop Performance and Improvement Department, Rothamsted Research, Hertfordshire, UK
MATTHEW D. HALFHILL • Department of Plant Sciences, University of Tennessee, Knoxville, TN
GENEVIÈVE HANSEN • Protein Therapeutics, Diversa Corporation, San Diego, CA
WENDY A. HARWOOD • Department of Crop Genetics, John Innes Centre, Norwich, UK
LUIS HERRERA-ESTRELLA • Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
LAURA C. HUDSON • Department of Plant Sciences, University of Tennessee, Knoxville, TN
SIRILUCK IAMTHAM • School of Biological Sciences, University of Manchester, Manchester, UK
DAVID J. INGHAM • BASF Plant Sciences, L.L.C., Research Triangle Park, NC
HUW D. JONES • Crop Performance and Improvement Department, Rothamsted Research, Hertfordshire, UK
JOSÉ JUÁREZ • Department of Plant Protection and Biotechnology, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
JULIE R. KIKKERT • Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, NY
KRYSTYNA KLIAMASZEWSKA • Natural Resources Canada, Canadian Forest Service, Quebec, Canada
VASUMATHI KODE • School of Biological Sciences, University of Manchester, Manchester, UK
DAVID LEE • Department of Applied Economics and Management, Cornell University, Ithaca, NY
YAO-GUANG LIU • South China Agricultural University, College of Life Science, Guangzhou, China
MARÍA M. LÓPEZ • Department of Plant Protection and Biotechnology, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
PANAGIOTIS MADESIS • School of Biological Sciences, University of Manchester, Manchester, UK
Contributors

Miguel Martínez-Trujillo • Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico

Etsuko Matsunaga • Pulp and Paper Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan

Reginald J. Millwood • Department of Plant Sciences, University of Tennessee, Knoxville, TN

Subhash C. Minocha • Department of Plant Biology, University of New Hampshire, Durham, NH

Luis Navarro • Department of Plant Protection and Biotechnology, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain

Andrew F. Page • Department of Plant Biology, University of New Hampshire, Durham, NH

Gabriela M. Pastori • Crop Performance and Improvement Department, Rothamsted Research, Hertfordshire, UK

Leandro Peña • Department of Plant Protection and Biotechnology, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain

Johanna Puonti-Kaerlas • European Patent Office, Munich, Germany

Bruce I. Reisch • Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, NY

Oscar N. Ruiz • Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL

Robert G. Rutledge • Canadian Forest Service, Natural Resources Canada, Quebec, Canada

Haroldo Salvo-Garrido • Biotechnology Unit, INIA Carillanca, Temuco, Chile

Armand Séguin • Natural Resources Canada, Canadian Forest Service, Quebec, Canada

June Simpson • Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico

John W. Snape • Department of Crop Genetics, John Innes Centre, Norwich, UK

Steven Spiker • Department of Genetics, North Carolina State University, Raleigh, NC

C. Neal Stewart, Jr. • Department of Plant Sciences, University of Tennessee, Knoxville, TN

Koichi Sugita • Pulp and Paper Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan
Paula Tennant • Department of Life Sciences, University of the West Indies, Kingston, Jamaica
William F. Thompson • Department of Botany, North Carolina State University, Raleigh, NC
Silvia Travella • Institute of Plant Biology, University of Zurich, Zurich, Switzerland
Joyce Van Eck • The Boyce Thompson Institute for Plant Research, Ithaca, NY
José R. Vidal • Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, NY
Allan Wenck • BASF Plant Sciences L.L.C., BASF Corporation, Research Triangle Park, NC.
Keiko Yamada • Pulp and Paper Research Laboratory, Nippon Paper Industries Co., Ltd., Tokyo, Japan
Peng Zhang • Institute of Plant Sciences, ETH-Zentrum, Zurich, Switzerland
Qunyu Zhang • College of Life Science, South China Agricultural University, Guangzhou, China