Chemoinformatics
Chemoinformatics

Concepts, Methods, and Tools for Drug Discovery

Edited by

Jürgen Bajorath
Albany Molecular Research Inc.
Bothell Research Center, Bothell, WA
and University of Washington, Seattle, WA
Preface

In the literature, several terms are used synonymously to name the topic of this book: chem-, chemi-, or chemo-informatics. A widely recognized definition of this discipline is the one by Frank Brown from 1998 (1) who defined chemoinformatics as the combination of “all the information resources that a scientist needs to optimize the properties of a ligand to become a drug.” In Brown’s definition, two aspects play a fundamentally important role: decision support by computational means and drug discovery, which distinguishes it from the term “chemical informatics” that was introduced at least ten years earlier and described as the application of information technology to chemistry (not with a specific focus on drug discovery). In addition, there is of course “chemometrics,” which is generally understood as the application of statistical methods to chemical data and the derivation of relevant statistical models and descriptors (2). The pharmaceutical focus of many developments and efforts in this area—and the current popularity of gene-to-drug or similar paradigms—is further reflected by the recent introduction of such terms as “discovery informatics” (3), which takes into account that gaining knowledge from chemical data alone is not sufficient to be ultimately successful in drug discovery. Such insights are well in accord with other views that the boundaries between bio- and chemoinformatics are fluid and that these disciplines should be closely combined or merged to significantly impact biotechnology or pharmaceutical research (4). Clearly, from an algorithmic or methodological point of view, bio- and chemoinformatics are much more similar to each other than many of their applications would suggest, at least on a first glance. It is fair to assume that the application of information science and technology to chemical or biological problems will further develop and mature, as well as continue to define, and redefine, itself.

If we wish to focus on chemoinformatics in a more narrow sense, what should we really consider? First, methods that support decision making in the context of pharmaceutical research (2) (such as compound design and selection) or methods that help interfacing computational and experimental programs (4) [such as virtual and biological screening (5)] are without doubt essential components. Second, equally important to developing methods and research tools is building and maintaining computational infrastructures to collect, organize, manage, and analyze chemical data. Third, I would propose
that it has also become increasingly difficult to distinguish between chemoinformatics and chemometrics, since statistical methods, models, and descriptors play a crucial role in, for example, similarity and diversity analysis or virtual screening. Fourth, approaches to explore (and exploit) structure–activity or structure–property relationships can hardly be excluded from chemoinformatics research, much of which aims at helping to identify or make better molecules. This means that approaches that are long disciplines in their own right such as QSAR or structure-based design can—and perhaps should—also be considered to contribute and belong to chemoinformatics. Lastly, evaluation of drug-likeness and prediction of downstream ADME characteristics of compounds have become highly relevant topics for chemoinformatics and drug discovery research and are approached using rather different concepts and algorithms.

Being confronted with the task of putting *Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery* together, I decided to focus on authors and their individual contributions, rather than trying to address everything possible that could be covered under the chemoinformatics umbrella, as discussed above. It was my sincere hope that this approach would do justice to this still evolving and rather diverse field. Therefore, a variety of researchers (including well-recognized pioneers, senior scientists, and junior-level investigators) from diverse professional environments (academia, large pharmaceutical industry, and biotech companies) were asked to contribute. Chemoinformatics-relevant subject areas were initially outlined to provide some guidance, but authors were given as much freedom as possible in choosing their topics and designing their chapters. The result we are looking at is the rather diverse array of chapters I had initially hoped for. Certainly, many chapters go well beyond the introduction of single methods and protocols that is a major theme of the *Methods in Molecular Biology* series, at least as far as experimental science is concerned. Our contributions range from the description of specific methods or applications to the discussion of fundamentally important concepts and extensive review articles. On the other hand, some of the topics I initially envisioned to cover are missing, for example, neural network simulations or chemical genetics, to name just two. By contrast, some contributions present and discuss similar methods, for example, compound selection or library design, in rather different ways, which I find particularly interesting and stimulating.

Chemoinformatics: Concepts, Methods, and Tools for Discovery begins with an elaborate theoretical discussion of the concept of molecular similarity by Maggiora & Shanmugasundaram that is one of the origins and cornerstones of chemoinformatics as we understand it today. Chapter 2 by Willett follows up on this theme and extends the discussion to molecular diversity, a related
—yet distinct—and equally fundamental concept. Following these methodological considerations, Bembenek & colleagues describe a computational infrastructure to enable pharmaceutical researchers to efficiently access basic chemoinformatics tools and help in decision-making. Chapters 4 and 5 by Parker & Schreyer and Lajiness & Shanmugasundaram describe efforts to interface chemoinformatics approaches with high-throughput screening and with screening and medicinal chemistry, respectively. As discussed above, the formation of such interfaces is one of the major challenges—and opportunities—for chemoinformatics in pharmaceutical research.

Esposito & colleagues provide an extensive discussion of QSAR approaches in Chapter 6. The authors review basic principles and methods and then focus on the latest developments in multidimensional QSAR analysis. In the following chapter, Gomar & colleagues describe the development of a lipophilicity descriptor that alleviates the molecular alignment problem in QSAR and discuss exemplary applications. In general, the majority of chemoinformatics applications critically depend on the use of descriptors of molecular structure and properties, and Chapter 8 by Labute presents a good example of descriptor design. The author describes the generation of a novel class of molecular surface property descriptors that can be readily calculated from 2D representations of molecular structures.

The next four chapters focus on partitioning algorithms and classification methods that have become very popular for the analysis of large compound databases, screening sets, and virtual screening for active molecules. Xue & colleagues describe cell-based partitioning based on principal component analysis and, to contrast with chemical space dimension reduction methods, Godden & Bajorath introduce a statistically based partitioning algorithm that directly operates in higher-dimensional, albeit simplified, chemical descriptor spaces. In the following back-to-back chapters, Lam & Welch first apply clustering and cell-based partitioning methods for the selection of active compounds from the HIV data set of the National Cancer Institute. Based on their computational scheme and results, Young & Hawkins apply recursive partitioning (another statistical approach) to the same data set, thus enabling direct comparisons.

Following these compound classification and selection methods, Chapters 13–15 describe different approaches to compound library design. Gillet discusses a genetic algorithm-based method to simultaneously optimize multiple objectives or properties when designing libraries. Schnur & colleagues describe various approaches to focus compound libraries on families of therapeutic targets, which represents a major trend in drug discovery, and Zheng introduces simulated annealing as a stochastic approach to library design.

In Chapter 16, Lavine & colleagues return to a compound classification problem by using a combination of principal component analysis and a genetic algo-
algorithm that is here applied to an optimization problem different from the one discussed by Gillet. In the next chapters, Crippen introduces novel ways of describing molecular chirality and conformational parameters with relevance for the analysis of structure–activity relationships, and Pick provides a brief review of scoring functions for structure-based virtual screening. The book ends with an extensive and detailed description by Jalaie & colleagues of different types of methods, including structure-based approaches, to predict drug-like character of compounds and basic ADME properties based on modeling their putative interactions with cytochrome P450 isoforms, which are important drug metabolizing enzymes. This discussion complements other major themes represented herein including molecular similarity, structure-activity relationships, and compound classification and design.

First and foremost, I would like to thank our authors whose diverse contributions have made this project a (hopefully, interesting!) reality.

Jürgen Bajorath

References
Contents

Preface .. v
Contributors .. xi

1 Molecular Similarity Measures
 Gerald M. Maggiora and Veerabahu Shanmugasundaram 1

2 Evaluation of Molecular Similarity and Molecular Diversity Methods
 Using Biological Activity Data
 Peter Willett .. 51

3 A Web-Based Chemoinformatics System for Drug Discovery
 Scott D. Bembenek, Brett A. Tounge, Steven J. Coats,
 and Charles H. Reynolds .. 65

4 Application of Chemoinformatics to High Throughput Screening:
 Practical Considerations
 Christian N. Parker and Suzanne K. Schreyer .. 85

5 Strategies for the Identification and Generation of Informative
 Compound Sets
 Michael S. Lajiness and Veerabahu Shanmugasundaram 111

6 Methods for Applying the Quantitative Structure–Activity
 Relationship Paradigm
 Emilio Xavier Esposito, Anton J. Hopfinger,
 and Jeffry D. Madura .. 131

7 3D-LogP: An Alignment-Free 3D Description of Local Lipophilicity
 for QSAR Studies
 Jérôme Gomar, Elie Giraud, David Turner, Roger Lahana,
 and Pierre Alain Carrupt .. 215

8 Derivation and Applications of Molecular Descriptors Based
 on Approximate Surface Area
 Paul Labute ... 261

9 Cell-Based Partitioning
 Ling Xue, Florence L. Stahura, and Jürgen Bajorath 279

10 Partitioning in Binary-Transformed Chemical Descriptor Spaces
 Jeffrey W. Godden and Jürgen Bajorath .. 291
Contents

11 Comparison of Methods Based on Diversity and Similarity for Molecule Selection and the Analysis of Drug Discovery Data
Raymond L. H. Lam and William J. Welch .. 301

12 Using Recursive Partitioning Analysis to Evaluate Compound Selection Methods
S. Stanley Young and Douglas M. Hawkins ... 317

13 Designing Combinatorial Libraries Optimized on Multiple Objectives
Valerie J. Gillet ... 335

14 Approaches to Target Class Combinatorial Library Design
Dora Schnur, Brett R. Beno, Andrew Good, and Andrew Tebben ... 355

15 Simulated Annealing: An Effective Stochastic Optimization Approach to Computational Library Design
Weifan Zheng ... 379

16 Genetic Algorithms for Classification of Olfactory Stimulants
Barry K. Lavine, Charles E. Davidson, Curt Breneman, and William Kaat ... 399

17 How to Describe Chirality and Conformational Flexibility
Gordon M. Crippen .. 427

18 Novel Scoring Methods in Virtual Ligand Screening
Daniel Pick .. 439

19 Prediction of Drug-like Molecular Properties: Modeling Cytochrome P450 Interactions
Mehran Jalaie, Rieko Arimoto, Eric Gifford, Sabine Schefzick, and Chris L. Waller ... 449

Index .. 521
Contributors

RIEKO ARIMOTO • Discovery Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan, USA
JÜRGEN BAJORATH • Computer Aided Drug Discovery, Albany Molecular Research Inc., Bothell Research Center, Bothell, Washington, and Department of Biological Structure, University of Washington, Seattle, Washington, USA
SCOTT D. BEMBENÉK • Computer Aided Drug Discovery and Cheminformatics, Johnson & Johnson, Pharmaceutical Research & Development, L.L.C., San Diego, California, USA
BRETT R. BENO • Computer Aided Drug Design, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
CURT BRENEMAN • Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, USA
PIERRE ALAIN CARRUPT • Institute of Medicinal Chemistry, School of Pharmacy, University of Lausanne, Lausanne, Switzerland
STEVEN J. COATS • High-Throughout Chemistry, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, Pennsylvania, USA
GORDON M. CRIPPEN • College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
CHARLES E. DAVIDSON • Department of Chemistry, Clarkson University, Potsdam, New York, USA
EMILIO XAVIER ESPOSITO • Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
ERIC GIFFORD • Discovery Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan, USA
VALERIE J. GILLET • Department of Information Studies, University of Sheffield, Sheffield, United Kingdom
ELIE GIRAUD • Aventis Pharmaceuticals, Bridgewater, New Jersey, USA
JEFFREY W. GODDEN • Computer Aided Drug Discovery, Albany Molecular Research Inc., Bothell Research Center, Bothell, WA, USA
JÉRÔME GOMAR • Synt:em, Nimes, France
ANDREW GOOD • Computer Aided Drug Design, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
DOUGLAS M. HAWKINS • School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA
ANTON J. HOPFINGER • Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
MEHRAN JALAIE • Discovery Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan, USA
WILLIAM KAAT • Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, USA
PAUL LABUTE • Chemical Computing Group Inc., Montreal, Quebec, Canada
ROGER LAHANA • Syntem, Nimes, France
MICHAEL S. LAINESS • Structural and Computational Sciences, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
RAYMOND L.H. LAM • Department of Data Exploration Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
BARRY K. LAVINE • Department of Chemistry, Clarkson University, Potsdam, New York, USA
JEFFREY D. MADURA • Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
GERALD M. MAGGIORA • Division of Medicinal Chemistry, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
CHRISTIAN N. PARKER • Novartis Institute for BioMedical Research, Cambridge, Massachusetts, USA
DANIEL PICK • Computational Science Research Center, San Diego State University, San Diego, California, USA
CHARLES H. REYNOLDS • Computer Aided Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, Pennsylvania, USA
SABINE SCHEFZICK • Discovery Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan, USA
DORA SCHNUR • Computer Aided Drug Design, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey, USA
SUZANNE K. SCHREYER • Chemical Computing Group Inc., Montreal, Quebec, Canada
VEERABAHU SHANMUGASUNDARAM • Computer Assisted Drug Design, Pfizer Global Research and Development Ann Arbor, Michigan, USA
FLORENCE L. STAHURA • Computer Aided Drug Discovery, Albany Molecular Research Inc., Bothell Research Center, Bothell, Washington, USA
Contributors

Andrew Tebben • Computer Aided Drug Design, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, New Jersey, USA

Brett A. Tounge • Computer Aided Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Spring House, Pennsylvania, USA

David Turner • Syntem, Nimes, France

Chris L. Waller • Discovery Technologies, Pfizer Global Research and Development, Ann Arbor, Michigan, USA

William J. Welch • Department of Statistics, University of British Columbia, Vancouver, British Columbia, and Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada

Peter Willett • Krebs Institute for Biomolecular Research and Department of Information Studies, University of Sheffield, Sheffield, United Kingdom

Ling Xue • Computer Aided Drug Discovery, Albany Molecular Research, Inc., Bothell Research Center, Bothell, Washington, USA

S. Stanley Young • National Institute of Statistical Sciences, Research Triangle Park, North Carolina, USA

Weifan Zheng • Lead Generation Chemistry, Eli Lilly and Company, Research Triangle Park, North Carolina, USA