DNA–Protein Interactions
DNA–protein interactions are fundamental to the existence of life forms, providing the key to the genetic plan as well as mechanisms for its maintenance and evolution. The study of these interactions is therefore fundamental to our understanding of growth, development, differentiation, evolution, and disease. The manipulation of DNA–protein interactions is also becoming increasingly important to the biotechnology industry, permitting among other things the reprogramming of gene expression. The success of the first edition of DNA–Protein Interactions; Principles and Protocols was the result of Dr. G. Geoff Kneale's efforts in bringing together a broad range of relevant techniques. In producing the second edition of this book, I have tried to further increase this diversity while presenting the reader with alternative approaches to obtaining the same information.

A major barrier to the study of interactions between biological macromolecules has always been detection and hence the need to obtain sufficient material. The development of molecular cloning and subsequently of protein overexpression systems has essentially breached this barrier. However, in the case of DNA–protein interactions, the problem of quantity and hence of detection is often offset by the high degree of selectivity and stability of DNA–protein interactions. DNA–protein binding reactions will often go to near completion at very low component concentrations even within crude protein extracts. Thus, although many techniques described in this volume were initially developed to study interactions between highly purified components, these same techniques are often just as applicable to the identification of novel DNA–protein interactions within systems as undefined as a whole cell extract. In general, these techniques use a DNA rather than a protein detection system because the former is more sensitive. Radiolabeled DNA fragments are easily produced by a range of techniques commonly available to molecular biologists.

DNA–protein complexes may be studied at three distinct levels—at the level of the DNA, of the protein, and of the complex. At the level of the DNA, the DNA binding site may be delimited and exact base sequence requirements defined. The DNA conformation can be studied and the exact bases contacted...
by the protein identified. At the protein level, the protein species binding a given DNA sequence can be identified. The amino acids contacting DNA and the protein surface facing the DNA may be defined and the amino acids essential to the recognition process can be identified. Furthermore, the protein’s tertiary structure and its conformational changes on complex formation can be studied. Finally, global parameters of a DNA–protein complex such as stoichiometry, the kinetics of its formation and dissociation, its stability, and the energy of interaction can be measured.

Filter binding, electrophoretic mobility shift assay (EMSA/gel shift), DNaseI footprinting, and Southwestern blotting have been the most commonly used techniques to identify potentially interesting DNA target sites and to define the proteins that bind them. For example, gel shift or footprinting of a cloned gene regulation sequence by proteins in a crude cell extract may define binding activities for a given DNA sequence that correlates with gene expression or silencing. These techniques can be used as an assay during subsequent isolation of the protein(s) responsible. Interference assays, SELEX, and more refined footprinting techniques, such as hydroxy radical footprinting and DNA bending assays, can then be used to study the DNA component of the DNA–protein complex, whereas the protein binding surface can be probed by amino acid side chain modification, DNA–protein crosslinking, and of course by the production of protein mutants. Genetic approaches have also opened the way to engineer proteins recognizing chosen DNA targets.

DNA–protein crosslinking has in recent years become a very important approach to investigate the relative positions of proteins in multicomponent protein–DNA complexes such as the transcription initiation complex. Here, crosslinkable groups are incorporated at specific DNA sequences and these are used to map out the “positions” of different protein components along the DNA. Extension of this technique can also allow the mapping of the crosslink within the protein sequence. Similar data can be obtained by incorporating crosslinking groups at known sites within the protein and then identifying the nucleotides targeted.

Once the basic parameters of a DNA–protein interaction have been defined, it is inevitable that a deeper understanding of the driving forces behind the DNA–protein interaction and the biological consequences of its formation will require physical and physicochemical approaches. These can be either static or dynamic measurements, but most techniques have been developed to deal with steady-state situations. Equilibrium constants can be obtained by surface plasmon resonance, by spectroscopic assays that differentiate complexed and uncomplexed components, and, for more stable products, by footprinting and gel shift. Spectroscopy can also give specific answers about
the conformation of proteins and any conformational changes they undergo on interacting with DNA as well as providing a rapid quantitative measure of complex formation. Microcalorimetry gives a global estimation of the forces stabilizing a given complex. Static pictures of protein–DNA interactions can be obtained by several techniques. At atomic resolution, X-ray crystallography, and nuclear magnetic resonance (NMR) studies require large amounts of highly homogeneous material. Lower resolution images can be obtained by electron and, more recently, by atomic force microscopies. Large multiprotein complexes are generally beyond the scope of NMR or even of X-ray crystallography. These are therefore more often studied using the electron microscope, either in a direct imaging mode or via the analysis of data obtained from 2D pseudocrystalline arrays.

Dynamic measurements of complex formation or dissociation can be obtained by biochemical techniques when the DNA–protein complexes have half-lives of several minutes to several hours. For footprinting and crosslinking, a general rule is that the complexes should be stable for a time well in excess of the proposed period of the enzymatic or chemical reaction. For gel shift, the complex half-life should at least approach that of the time of gel migration, although the cage effect may tend to stabilize the complex within the gel matrix, extending the applicability of this technique. More rapid assembly kinetics, multistep assembly processes, and short-lived DNA–protein complexes require much more rapid techniques such as UV laser-induced crosslinking, surface plasmon resonance, and spectroscopic assays. UV-laser induced DNA–protein crosslinking is a promising development because it potentially permits the kinetics of complex assembly to be followed both in vitro and in vivo.

When I decided to edit a second edition of the present volume, I was of course aware of the limitations of many of the more commonly used techniques. But as I read the various chapters I realized that each technique was at least as much limited by the conditions necessary for the probing reaction itself as by the type of information the probe could deliver. This is perhaps most evident for in vivo applications, which require agents that can easily enter cells, e.g., DMS and potassium permanganate are able to penetrate cells while DNaseI and DEPC are either too large or insufficiently water soluble to enter cells unaided. (Appendix II presents a summary of the activities and applications of the various DNA modification and cleavage reagents described in this book.) Gel shift assays are limited by the finite range of useable electrophoresis conditions. Because buffers must have low conductance, the KCl or NaCl solutions typically used for DNA–protein binding reactions are generally inappropriate. (Appendix I contains a list of the different gel shift conditions described in various chapters of this book.) Thus, it is often as
important to choose a technique appropriate to the conditions under which one wishes to observe the DNA–protein interaction as it is to choose the appropriate probing activity.

The present volume attempts to bring together a broad range of techniques used to study DNA–protein interactions. Such a volume can never be complete nor definitive, but I hope this book will provide a useful source of technical advice for molecular biologists. Its preparation required the cooperation of many people. In particular I would like to thank all the authors for their very significant efforts. Thanks are also due to John Walker for his encouragement and to the previous editor Geoff Kneale and to Craig Adams of Humana Press for their help. I also thank Margrit and Peter Wittwer for providing space in the Pfarrhaus of the Predigerkirche, Zürich, where much of the chapter editing was done, and Bernadette for her patience, understanding, corrections, and advice.

Tom Moss
Contents

Preface ... v
Contributors .. xiii

1 Filter-Binding Assays
 Peter G. Stockley ... 1

2 Electrophoretic Mobility Shift Assays for the Analysis of DNA–Protein Interactions
 Marc-André Laniel, Alain Béliveau, and Sylvain L. Guérin 13

3 DNase I Footprinting
 Benoît Leblanc and Tom Moss .. 31

4 Footprinting with Exonuclease III
 Willi Metzger and Hermann Heumann ... 39

5 Hydroxyl Radical Footprinting
 Evgeny Zaychikov, Peter Schickor, Ludmilla Denissova, and Hermann Heumann 49

6 The Use of Diethyl Pyrocarbonate and Potassium Permanganate as Probes for Strand Separation and Structural Distortions in DNA
 Brenda F. Kahl and Marvin R. Paule ... 63

7 Footprinting DNA–Protein Interactions in Native Polyacrylamide Gels by Chemical Nucleolytic Activity of 1,10-Phenanthroline-Copper
 Athanasios G. Papavassiliou .. 77

8 Uranyl Photofootprinting
 Peter E. Nielsen ... 111

9 Osmium Tetroxide Modification and the Study of DNA–Protein Interactions
 James A. McClellan .. 121

10 Determination of a Transcription-Factor-Binding Site by Nuclease Protection Footprinting onto Southwestern Blots
 Athanasios G. Papavassiliou ... 135

11 Diffusible Singlet Oxygen as a Probe of DNA Deformation
 Malcolm Buckle and Andrew A. Travers .. 151
Contents

12 Ultraviolet-Laser Footprinting
Johannes Geiselmann and Frederic Boccard 161

13 In Vivo DNA Analysis
Régen Drouin, Jean-Philippe Therrien, Martin Angers, and Stéphane Ouellet.. 175

14 Identification of Protein–DNA Contacts with Dimethyl Sulfate: Methylation Protection and Methylation Interference
Peter E. Shaw and A. Francis Stewart .. 221

15 Ethylation Interference
Iain W. Manfield and Peter G. Stockley... 229

16 Hydroxyl Radical Interference
Peter Schickor, Evgeny Zaychikov, and Hermann Heumann 245

17 Identification of Sequence-Specific DNA-Binding Proteins by Southwestern Blotting
Simon Labbé, Gale Stewart, Olivier LaRochelle, Guy G. Poirier, and Carl Ségui... 255

18 A Competition Assay for DNA Binding Using the Fluorescent Probe ANS
Ian A. Taylor and G. Geoff Kneale... 265

19 Site-Directed Cleavage of DNA by Linker Histone Protein-Fe(II) EDTA Conjugates
David R. Chafin and Jeffrey J. Hayes .. 275

20 Nitration of Tyrosine Residues in Protein–Nucleic Acid Complexes
Simon E. Plyte .. 291

21 Chemical Modification of Lysine by Reductive Methylation: A Probe of Residues Involved in DNA Binding
Ian A. Taylor and Michelle Webb ... 301

22 Limited Proteolysis of Protein–Nucleic Acid Complexes
Simon E. Plyte and G. Geoff Kneale.. 315

23 Ultraviolet Crosslinking of DNA–Protein Complexes via 8-Azidoadenine
Rainer Meffert, Klaus Dose, Gabriele Rathgeber, and Hans-Jochen Schäfer ... 323

24 Site-Specific Protein–DNA Photocrosslinking: Analysis of Bacterial Transcription Initiation Complexes
Nikolai Naryshkin, Younggyu Kim, Qianping Dong, and Richard H. Ebright ... 337
Contents

25 Site-Directed DNA Photoaffinity Labeling of RNA Polymerase III Transcription Complexes
Jim Persinger and Blaine Bartholomew ... 363

26 Use of Site-Specific Protein–DNA Photocrosslinking to Analyze the Molecular Organization of the RNA Polymerase II Initiation Complex
François Robert and Benoît Coulombe ... 383

27 UV Laser-Induced Protein–DNA Crosslinking
Stefan I. Dimitrov and Tom Moss .. 395

28 Plasmid Vectors for the Analysis of Protein-Induced DNA Bending
Christian Zwieb and Sankar Adhya .. 403

29 Engineering Nucleic Acid-Binding Proteins by Phage Display
Mark Isalan and Yen Choo .. 417

30 Genetic Analysis of DNA–Protein Interactions Using a Reporter Gene Assay in Yeast
David R. Setzer, Deborah B. Schulman, and Michael J. Bumbulis 431

31 Assays for Transcription Factor Activity
Virgil Rhodius, Nigel Savery, Annie Kolb, and Stephen Busby 451

32 Assay of Restriction Endonucleases Using Oligonucleotides
Bernard A. Connolly, Hsiao-Hui Liu, Damian Parry, Lisa E. Engler, Michael R. Kurpiewski, and Linda Jen-Jacobson .. 465

33 Analysis of DNA–Protein Interactions by Intrinsic Fluorescence
Mark L. Carpenter, Anthony W. Oliver, and G. Geoff Kneale 491

34 Circular Dichroism for the Analysis of Protein–DNA Interactions
Mark L. Carpenter, Anthony W. Oliver, and G. Geoff Kneale 503

35 Calorimetry of Protein–DNA Complexes and Their Components
Christopher M. Read and Ilian Jelesarov ... 511

36 Surface Plasmon Resonance Applied to DNA–Protein Complexes
Malcolm Buckle .. 535

37 Reconstitution of Protein–DNA Complexes for Crystallization
Rachel M. Conlin and Raymond S. Brown .. 547

38 Two-Dimensional Crystallization of Soluble Protein Complexes
Patrick Schultz, Nicolas Bischler, and Luc Lebeau 557
39 Atomic Force Microscopy of DNA and Protein–DNA Complexes
Using Functionalized Mica Substrates
Yuri L. Lyubchenko, Alexander A. Gall, and Luda S. Shlyakhtenko ... 569

40 Electron Microscopy of Protein–Nucleic Acid Complexes: Uniform Spreading of Flexible Complexes, Staining with a Uniform Thin Layer of Uranyl Acetate, and Determining Helix Handedness
Carla W. Gray ... 579

41 Scanning Transmission Electron Microscopy of DNA–Protein Complexes
Joseph S. Wall and Martha N. Simon .. 589

42 Determination of Nucleic Acid Recognition Sequences by SELEX
Philippe Bouvet ... 603

43 High DNA–Protein Crosslinking Yield with Two-Wavelength Femtosecond Laser Irradiation
Christoph Russmann, Rene Beigang, and Miguel Beato 611

Appendices:
Appendix I: EMSA/Gel Shift Conditions .. 617
Appendix II: DNA-Modification/Cleavage Reagents 619
Index ... 621
Contributors

SANKAR ADHYA • Laboratory of Molecular Biology, National Institutes of Health, NCI, Bethesda, MD

MARTIN ANGERS • Division de Pathologie, Department de Biologie Médicale, Université Laval, et Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche, Pavilion Saint-Francois d’Assise, Québec, Canada

BLAINE BARTHOLOMEW • Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL

MIGUEL BEATO • Instütue für Molekularbiologie und Tumorforshung, Philipps-Universität Marburg, Marburg, Germany

RENE BEIGANG • Fachbereich Physik, Universität Kaiserlautern, Germany

ALAIN BÉLIVEAU • Laboratory of Molecular Endocrinologie, Centre Hopitalier Universitaire de Québec, Université Laval, Québec, Canada

NICOLAS BISCHLER • Faculté de Médecine, IGBMC, Illkirch, France

FREDERIC BOCCARD • Centre de Génétique Moléculaire, CNRS, Yvette, France

PHILIPPE BOUVET • Laboratoire de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France

RAYMOND S. BROWN • Laboratory of Molecular Medicine, Howard Hughes Medical Institute, Children’s Hospital, Boston, MA

MALCOLM BUCKLE • Unité Physicochimie des Macromolécules Biologiques, Institut Pasteur, Paris, France

MICHAEL J. BUMBULIS • Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, and the Department of Biology, Baldwin-Wallace College, Berea, OH

STEPHEN BUSBY • School of Biochemistry, University of Birmingham, Birmingham, UK

MARK L. CARPENTER • University of Oxford, Oxford, UK

DAVID R. CHAFIN • Department of Biochemistry, University of Rochester, Rochester, NY

YEN CHOO • Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK

RACHEL M. CONLIN • Laboratory of Molecular Medicine, Howard Hughes Medical Institute, Children’s Hospital, Boston, MA
Contributors

BERNARD A. CONNOLLY • Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK

BENOÎT COLOMBE • Département de Biologie, Centre de Recherche sur les Mécanismes d’Expression Génétique, Université de Sherbrooke, Sherbrooke, Québec, Canada

LUDMILLA DENISSOVA • Max Planck Institute of Biochemistry, Martinsried, Germany

STEVEN I. DIMITROV • Faculté de Médecine, Institut Albert Bonniot, Université Joseph Fourier Grenoble I, La Tronche, France

QIANPING DONG • Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ

KLAUS DOSE • Institut für Biochemie, Johannes Gutenberg-Universität, Mainz, Germany

RÉGEN DROUIN • Department de Biologie Médicale, Université Laval, et Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche, Pavilion Saint-Francois d’Assise, Québec, Canada

RICHARD H. EBRIGHT • Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ

LISA E. ENGLER • Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA

ALEXANDER A. GALL • Seattle Genetics, Bothell, WA

JOHANNES GEISELMANN • Plasticité et Expression des Génomes Microbiens, Université Joseph Fourier, Grenoble, France

CARLA W. GRAY • Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX

SYLVAIN GUÉRIN • Laboratory of Molecular Endocrinologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada

JEFFREY J. HAYES • Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY

HERMANN HEUMANN • Max Planck Institute of Biochemistry, Martinsried, Germany

MARK ISALAN • Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK

ILIAN JELESAROV • Biochemisches Institut der Universität Zurich, Zurich, Switzerland

LINDA JEN-JACOBSON • Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA

BRENDA F. KAHL • Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO

YOUNGGYU KIM • Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ
MARVIN PAULE • Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO

JIM PERSINGER • Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, IL

SIMON E. PLYTE • Pharmacia and Upjohn, Milano, Italy

GUY G. POIRIER • Unité Santé et Environment, CHUQ, Pavillon CHUL, Québec, Canada

GABRIELE RATHGEBER • Merck KGaA, Darmstadt, Germany

CHRISTOPHER M. READ • Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth, UK

VIRGIL RHODIUS • School of Biochemistry, University of Birmingham, Birmingham, UK

FRANÇOIS ROBERT • Whitehead Institute for Biomedical Research, Cambridge, MA

CHRISTOPH RUSSMANN • Fachbereich Physik, Universität Kaiserlautern, Germany

NIGEL SAVERY • School of Biochemistry, University of Birmingham, Birmingham, UK

HANS-JOCHEN SCHAFER • Institute für Biochemie, Johannes Gutenberg-Universität, Mainz, Germany

PETER SCHICKOR • Max Planck Institute of Biochemistry, Martinsried, Germany

DEBORAH B. SCHULMAN • Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH

PATRICK SCHULTZ • Faculté de Médecine, Illkirch, France

CARL SÉGUIN • Centre de Recherche en Cancérologie, Université Laval, CHUQ/L’Hôtel-Dieu de Québec, Québec, Canada

DAVID R. SETZER • Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH

PETER E. SHAW • Department of Biochemistry, School of Biomedical Sciences, University of Nottingham, Queen’s Medical Center, Nottingham, UK

LUDA S. SHLYAKHTENKO • Departments of Plant Biology and Microbiology, Arizona State University, Tempe, AZ

MARThA N. SIMOn • Brookhaven National Laboratory, Biology Department, Upton, NY

A. FRANCIS STEWART • European Molecular Biology Laboratory, Heidelberg, Germany

GALE STEWART • Centre de Recherche en Cancérologie, Université Laval, CHUQ/L’Hôtel-Dieu de Québec, Québec, Canada

PETER G. STOCKLEY • Department of Genetics, University of Leeds, Leeds, UK

IAN TAYLOR • Laboratory of Molecular Biophysics, University of Oxford, Oxford, UK
Contributors

Jean-Philippe Thérien • Division de Pathologie, Department de Biologie Médicale, Université Laval, et Unité de Recherche en Génétique Humaine et Moléculaire, Centre de Recherche, Pavilion Saint-François d’Assise, Québec, Canada

Andrew A. Travers • Lab Molecular Biology, Medical Research Council, Cambridge, UK

Joseph S. Wall • Brookhaven National Laboratory, Biology Department, Upton, NY

Michelle Webb • Department of Chemistry, University of Sheffield, Sheffield, UK

Evgeny Zaychikov • Max Planck Institute of Biochemistry, Martinried, Germany

Christian Zwieb • Department of Molecular Biology, The University of Texas Health Center at Tyler, Tyler, TX