Calcium-Binding Protein Protocols

Volume 1: Reviews and Case Studies

Edited by
Hans J. Vogel

Department of Biological Sciences, University of Calgary
Calgary, AB, Canada

Humana Press Totowa, New Jersey
Dedication

This book is dedicated to the memory of Dr. J. David Johnson (Columbus, OH) whose untimely death on January 21, 2000 has deeply shocked all his colleagues and friends. David has made numerous excellent contributions to our understanding of calcium-binding proteins. His insight and enthusiasm will be sadly missed.

Hans J. Vogel, PhD
Calcium plays an important role in a wide variety of biological processes. This divalent metal ion can bind to a large number of proteins; by doing so it modifies their biological activity or their stability. Because of its distinct chemical properties calcium is uniquely suited to act as an on–off switch or as a light dimmer of biological activities. The two books entitled Calcium-Binding Protein Protocols (Volumes I and II) focus on modern experimental analyses and methodologies for the study of calcium-binding proteins. Both extracellular and intracellular calcium-binding proteins are discussed in detail. However, proteins involved in calcium handling (e.g., calcium pumps and calcium channels), fall outside of the scope of these two volumes. Also, calcium-binding proteins involved in bone deposition will not be discussed, as this specific topic has been addressed previously. The focus of these two books is on studies of the calcium-binding proteins and their behavior in vitro and in vivo. The primary emphasis is on protein chemistry and biophysical methods. Many of the methods described will also be applicable to proteins that do not bind calcium.

Calcium-Binding Protein Protocols is divided into three main sections. The section entitled Introduction and Reviews provides information on the role of calcium in intracellular secondary messenger activation mechanisms. Moreover, unique aspects of calcium chemistry and the utilization of calcium in dairy proteins, as well as calcium-binding proteins involved in blood clotting, are addressed. The second section entitled Calcium-Binding Proteins: Case Studies provides a wealth of information about protein purification and characterization strategies, X-ray crystallography and other studies that are focused on specific calcium-binding proteins. Together, these two sections comprise Volume I of this series. By introducing the various classes of intra- and extracellular calcium-binding proteins and their modes of action, these two sections set the stage and provide the necessary background for the third section. The final section entitled Methods and Techniques to Study Calcium-Binding Proteins makes up Volume II of Calcium-Binding Protein Protocols. Here the focus is on the use of a range of modern experimental techniques that can be employed to study the solution structure, stability, dynamics, calcium-binding properties, and biological activity of calcium-binding proteins in general. As well, studies of their ligand-binding properties and their distribution in cells are included. In addition to enzymatic assays and more routine spectroscopic and protein chemistry techniques, particular attention has been paid in the second volume to modern NMR approaches, thermodynamic analyses,
kinetic measurements such as surface plasmon resonance, strategies for amino acid sequence alignments, as well as fluorescence methods to study the distribution of calcium and calcium-binding proteins in cells. In preparing their chapters, all the authors have attempted to share the little secrets that are required to successfully apply these methods to related proteins. Together the two volumes of Calcium-Binding Protein Protocols provide the reader with a host of experimental methods that can be applied either to uncover new aspects of earlier characterized calcium-binding proteins or to study newly discovered proteins.

As more and more calcium-binding proteins are being uncovered through genome sequencing efforts and protein interaction studies (e.g., affinity chromatography, crosslinking or yeast two-hybrid systems) the time seemed right to collect all the methods used to characterize these proteins in a book. The methods detailed here should provide the reader with the essential tools for their analysis in terms of structure, dynamics, and function. The hope is that these two volumes will contribute to our understanding of the part of the proteome, which relies on interactions with calcium to carry out its functions.

In closing, I would like to thank Margaret Tew for her invaluable assistance with the editing and organization of these two books. Finally, I would like to thank the authors of the individual chapters, who are all experts in this field, for their cooperation in producing these two volumes in a timely fashion.

Hans J. Vogel, PhD
Contents

Dedication ... v
Preface .. vii
Contents of Companion Volume .. xi
Contributors .. xiii

PART I. INTRODUCTION AND REVIEWS

1 Calcium-Binding Proteins
 Hans J. Vogel, Richard D. Brokx, and Hui Ouyang .. 3
2 Calcium
 Robert J. P. Williams ... 21
3 Crystal Structure of Calpain and Insights into Ca\(^{2+}\)-Dependent Activation
 Zongchao Jia, Christopher M. Hosfield, Peter L. Davies, and John S. Elce 51
4 The Multifunctional S100 Protein Family
 Claus W. Heizmann .. 69
5 Ca\(^{2+}\) Binding to Proteins Containing \(\gamma\)-Carboxyglutamic Acid Residues
 Egon Persson ... 81
6 The Caseins of Milk as Calcium-Binding Proteins
 Harold M. Farrell, Jr., Thomas F. Kumasinski, Edyth L. Malin, and Eleanor M. Brown 97

PART II. CALCIUM-BINDING PROTEINS: CASE STUDIES

7 Preparation of Recombinant Plant Calmodulin Isoforms
 Raymond E. Zielinski .. 143
8 Isolation of Recombinant Cardiac Troponin C
 John A. Putkey and Wen Liu .. 151
9 Skeletal Muscle Troponin C: Expression and Purification of the Recombinant Intact Protein and Its Isolated N- and C-Domain Fragments
 Joyce R. Pearstone and Lawrence B. Smillie ... 161
10 Purification of Recombinant Calbindin D\(_{9k}\)
 Eva Thulin ... 175
11 S100 Proteins: From Purification to Functions
 Jean Christophe Deloulme, Gaëlh Ouengue Mbele, and Jacques Baudier .. 185

12 Cadherins
 Jean-René Alattia, Kit I. Tong, Masatoshi Takeichi, and Mitsuhiko Ikura .. 199

13 α-Lactalbumin and (Calcium-Binding) Lysozyme
 Katsutoshi Nitta ... 211

14 Recombinant Annexin II Tetramer
 Hyoung-Min Kang, Nolan R. Filipenko, Geetha Kassam, and David M. Waisman .. 225

15 Purification and Characterization of ALG-2: A Novel Apoptosis-Linked Ca²⁺-Binding Protein
 Mingjie Zhang and Kevin W.-H. Lo ... 235

16 Crystallization and Structural Details of Ca²⁺-Induced Conformational Changes in the EF-Hand Domain VI of Calpain
 Miroslaw Cygler, Pawel Grochulski, and Helen Blanchard ... 243

17 Neurocalcin: Role in Neuronal Signaling
 Senadhi Vijay-Kumar and Vinod D. Kumar .. 261

18 Crystallization and Structure—Function of Calsequestrin
 ChulHee Kang, William R. Trumble, and A. Keith Dunker .. 281

19 Use of Fluorescence Resonance Energy Transfer to Monitor Ca²⁺-Triggered Membrane Docking of C2 Domains
 Eric A. Nalefski and Joseph J. Falke .. 295

20 Ca²⁺-Binding Mode of the C₂A-Domain of Synaptotagmin
 Josep Rizo, Josep Ubach, and Jesús García ... 305

21 Study of Calcineurin Structure by Limited Proteolysis
 Seun-Ah Yang and Claude Klee .. 317

Index .. 335
CONTENTS OF THE COMPANION VOLUME

Calcium-Binding Protein Protocols

Volume II: Methods and Techniques

PART III. METHODS AND TECHNIQUES TO STUDY CALCIUM-BINDING PROTEINS

1 Quantitative Analysis of Ca²⁺-Binding by Flow Dialysis
 Michio Yazawa

2 Calcium Binding to Proteins Studied via Competition with Chromophoric Chelators
 Sara Linse

3 Deconvolution of Calcium-Binding Curves: Facts and Fantasies
 Jacques Haiech and Marie-Claude Kilhoffer

4 Absorption and Circular Dichroism Spectroscopy
 Stephen R. Martin and Peter M. Bayley

5 Fourier Transform Infrared Spectroscopy of Calcium-Binding Proteins
 Heinz Fabian and Hans J. Vogel

6 Steady-State Fluorescence Spectroscopy
 Aalim M. Weljie and Hans J. Vogel

7 Fluorescence Methods for Measuring Calcium Affinity and Calcium Exchange with Proteins
 J. David Johnson and Svetlana B. Tikunova

8 Surface Plasmon Resonance of Calcium-Binding Proteins
 Karin Julenius

9 Differential Scanning Calorimetry
 Maria M. Lopez and George I. Makhatadze

10 Isothermal Titration Calorimetry
 Maria M. Lopez and George I. Makhatadze

11 Multiangle Laser Light Scattering and Sedimentation Equilibrium
 Leslie D. Hicks, Jean-René Alattia, Mitsuhiko Ikuru, and Cyril M. Kay

12 Small-Angle Solution Scattering Reveals Information on Conformational Dynamics in Calcium-Binding Proteins and in their Interactions with Regulatory Targets
 Jill Trehwella and Joanna K. Krueger

13 Investigation of Calcium-Binding Proteins Using Electrospray Ionization Mass Spectrometry
 Amanda L. Doherty-Kirby and Gilles A. Lajoie

14 Synthetic Calcium-Binding Peptides
 Gary S. Shaw
Contents of Companion Volume

15 Proteolytic Fragments of Calcium-Binding Proteins
 Richard D. Brokx and Hans J. Vogel
16 Electron Magnetic Resonance Studies of Calcium-Binding Proteins
 Lawrence J. Berliner
17 Cadmium-113 and Lead-207 NMR Spectroscopic Studies
 of Calcium-Binding Proteins
 Teresa E. Clarke and Hans J. Vogel
18 Calcium-43 NMR of Calcium-Binding Proteins
 Torbjörn Drakenberg
19 Exploring Familial Relationships Using Multiple Sequence Alignment
 Aalim M. Weljie and Jaap Heringa
20 Structure Determination by NMR: Isotope Labeling
 Monica X. Li, David C. Corson, and Brian D. Sykes
21 Protein Structure Calculation from NMR Data
 Tapas K. Mal, Stefan Bagby, and Mitsuhiko Ikura
22 Shape and Dynamics of a Calcium-Binding Protein Investigated
 by Nitrogen-15 NMR Relaxation
 Jörn M. Werner, Iain D. Campbell, and A. Kristina Downing
23 The Use of Dipolar Couplings for the Structure Refinement of a Pair
 of Calcium Binding EGF Domains
 Jonathan Boyd, Iain D. Campbell, and A. Kristina Downing
24 Vector Geometry Mapping: A Method to Characterize the Conformation
 of Helix-Loop-Helix Calcium Binding Proteins
 Kyoko L. Yap, James B. Ames, Mark B. Swindells,
 and Mitsuhiko Ikura
25 Use of Calmodulin Antagonists and S-100 Protein Interacting Drugs
 for Affinity Chromatography
 Ryoji Kobayashi
26 Enzymatic Assays to Compare Calmodulin Isoforms, Mutants, and Chimeras
 Michael P. Walsh, Jacqueline E. Van Lierop, Cindy Sutherland,
 Ritsu Kondo, and J. David Johnson
27 Gene Expression in Transfected Cells
 Kate Hughes, Juha Saarikettu, and Thomas Grundström
28 Monitoring the Intracellular Free Ca^{2+}-Calmodulin Concentration
 with Genetically-Encoded Fluorescent Indicator Proteins
 Anthony Persechini
29 Studying the Spatial Distribution of Ca^{2+}-Binding Proteins:
 How Does it Work for Calmodulin?
 Katalin Török, Richard Thorogate, and Steven Howell
Contributors

JEAN-RENÉ ALATTIA • Division of Molecular and Structural Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

JACQUES BAUDIER • Departement de Biologie Moléculaire et Structurale du CEA, EMI-INSERM104, Grenoble Cedex, France

HELEN BLANCHARD • Biochemisches Institut, Universität Zürich, Zürich, Switzerland

RICHARD D. BROX • Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

ELEANOR M. BROWN • Eastern Regional Research Center, United States Department of Agriculture, ARS, Wyndmoor, PA

MIROSŁAW CYGLER • National Research Council, Montreal, Biotechnology Research Institute, Quebec, Canada

PETER L. DAVIES • Department of Biochemistry, Queen’s University and the Protein Engineering Network of Centres of Excellence, Kingston, ON, Canada

JEAN CHRISTOPHE DELOULME • Departement de Biologie Moléculaire et Structurale du CEA, EMI-INSERM104, Grenoble Cedex, France

A. KEITH DUNKER • Department of Biochemistry and Biophysics, Washington State University, Pullman, WA

JOHN S. ELCIE • Department of Biochemistry, Queen’s University and the Protein Engineering Network of Centres of Excellence, Kingston, ON, Canada

JOSEPH J. FALKE • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO

HAROLD M. FARRELL, JR. • Eastern Regional Research Center, United States Department of Agriculture, ARS, Wyndmoor, PA

NOLAN R. FILIPENKO • Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada

JESÚS GARCÍA • Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Centre, Dallas, TX

Paweł GROCHULSKI • BioMep Inc., Department of Biochemistry, University of Montreal, Quebec, Canada

CLAUS W. HEIZMANN • Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, Zurich, Switzerland

xiii
Christopher M. Hosfield • Department of Biochemistry, Queen’s University and the Protein Engineering Network of Centres of Excellence, Kingston, ON, Canada

Mitsuhiko Ikura • Division of Medical and Structural Biology, Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada

Zongchao Jia • Department of Biochemistry, Queen’s University and the Protein Engineering Network of Centres of Excellence, Kingston, ON, Canada

Chulhee Kang • Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington

Hyoungh Min Kang • Department of Laboratory Medicine, University of Washington, Seattle, WA

Geetha Kassam • Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada

Claude Klee • Laboratory of Biochemistry, National Cancer Institute, Bethesda, MD

Vinod D. Kumar • Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA

Thomas F. Kmosinski • Eastern Regional Research Center, United States Department of Agriculture, ARS, Wyndmoor, PA

Wen Liu • Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX

Kevin W.-H. Lo • Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, PR China

Edyth L. Malin • Eastern Regional Research Center, United States Department of Agriculture, ARS, Wyndmoor, PA

Gaëlle Oueguie Mbele • Département de Biologie Moléculaire et Structurale du CEA, EMI-INSERM104, Grenoble Cedex, France

Eric A. Nalefski • Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO

Katsutoshi Nitta • Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kitaku, Sapporo, Japan

Hui Ouyang • Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

Joyce R. Pearlstone • Department of Biochemistry, University of Alberta, Edmonton, AB, Canada

Egon Persson • Vascular Biochemistry, Novo Nordisk A/S, Novo Nordisk Park, Malov, Denmark

John A. Putkey • Department of Biochemistry and Molecular Biology, University of Texas Medical Center, Houston, TX
Contributors xv

Josep Rizo • Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Centre, Dallas, TX
Lawrence B. Smillie • Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
Masatoshi Takeichi • Department of Biophysics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606, Japan
Eva Thulin • Department of Physical Chemistry 2, Lund University, Lund, Sweden
Kit I. Tong • Division of Molecular and Structural Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
William R. Trumble • Agricultural Experiment Station, University of New Hampshire, Durham, New Hampshire
Josep Ubach • Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Centre, Dallas, TX
Senadhi Vijay-Kumar • Department of Biochemistry, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA
Hans J. Vogel • Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
David M. Waismann • Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
Robert J. P. Williams • Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
Seun-Ah Yang • Laboratory of Biochemistry, National Cancer Institute, Bethesda, MD
Mingjie Zhang • Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, PR China
Raymond E. Zielinski • Department of Plant Biology, University of Illinois, Urbana, IL