Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
Protein Gel Detection and Imaging

Methods and Protocols

Edited by

Biji T. Kurien and R. Hal Scofield

Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Arthritis and Clinical Immunology, Oklahoma City, OK, USA

Humana Press
Preface

This volume describes electrophoresis detection techniques and is part two of a pair of books that expands on the first edition of Protein Electrophoresis (2012). Some of the techniques described herein are minor but interesting variations from the original, while other techniques vary greatly from what was originally described many years ago. Our goal is to provide the reader practical methods by which the different procedures can be performed such that the readers will be able to bring a new technique into their labs without too much difficulty. We know from long experience that reading the methods in a published paper may not be much help; like cooking recipes, laboratory protocols and published methods may not help you much unless you already know what to do. We hope this volume will give the kind of guidance that allows one to reproduce some new experiments, even if the task is unfamiliar.

Oklahoma City, OK, USA

Biji T. Kurien

R. Hal Scofield
Contents

Preface ... v
Contributors ... xi

1 Protein Stains and Applications ... 1
 Pazhani Sundaram

2 The Roles of Acetic Acid and Methanol During Fixing and Staining
 Proteins in an SDS–Polyacrylamide Electrophoresis Gel 15
 J. P. Dean Goldring

3 Multicolored Prestained Standard Protein Marker Generation Using
 a Variety of Remazol Dyes for Easy Visualization of Protein Bands
 During SDS-PAGE ... 19
 Gaurav Kumar

4 Coomassie Brilliant Blue Staining of Polyacrylamide Gels. 27
 Claudia Arndt, Stefanie Koristka, Anja Feldmann, Ralf Bergmann, and Michael Bachmann

5 A Simple, Time-Saving Dye Staining of Proteins in Sodium
 Dodecyl Sulfate–Polyacrylamide Gel Using Coomassie Blue 31
 Wei-hua Dong, Fang Wang, Jun-he Zhang, Yan-sheng Zhou,
 Ling-ye Zhang, and Tian-yun Wang

6 Application of Heat to Quickly Stain and Destain Proteins
 Stained with Coomassie Blue ... 37
 Biji T. Kurien and R. Hal Scofield

7 Silver Staining Techniques of Polyacrylamide Gels 47
 Nicole Berndt, Ralf Bergmann, Claudia Arndt, Stefanie Koristka, and Michael Bachmann

8 Counterion Dye Staining of Proteins in One- and Two-Dimensional Sodium
 Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Tryptic
 Gel Digestion of Stained Protein for Mass Spectrometry 53
 Sun-Young Hwang and Jung-Kap Choi

9 Detection of Phosphoproteins in Sodium Dodecyl Sulfate–Polyacrylamide
 Gel Electrophoresis Using 8-Quinolinol Stain ... 65
 Sun-Young Hwang, Xu Wang, and Jung-Kap Choi

10 Microwave-Assisted Protein Staining, Destaining, and In-Gel/In-Solution
 Digestion of Proteins ... 75
 Jennie R. Lill and Victor J. Nesatyy

11 Fluorescent Staining of Gels .. 87
 Engelbert Buxbaum

12 A Single-Step Simultaneous Protein Staining Procedure for Polyacrylamide
 Gels and Nitrocellulose Membranes by Alta During Western Blot Analysis 95
 Jayanta K. Pal, Sunil K. Berwal, and Rupali N. Soni

vii
13 TEMED Enhanced Photoluminescent Imaging of Human Serum Proteins by Quantum Dots After PAGE. ... 105
 Na Na and Jin Ouyang
14 Detection of Glycoproteins in Polyacrylamide Gels Using Pro-Q Emerald 300 Dye, a Fluorescent Periodate Schiff-Base Stain 115
 Padmaja Mehta-D’Souza
15 Curcumin/Turmeric as an Environment-Friendly Protein Gel Stain 121
 Biji T. Kurien, Yaser Dorri, and R. Hal Scofield
16 Detection of Multiple Enzymes in Fermentation Broth Using Single PAGE Analysis .. 133
 K. Divakar, J. Deepa Arul Priya, G. Pannner Selvam, M. Suryia Prabha,
 Ashwin Kannan, G. Nandhini Devi, and Pennathur Gautam
17 Revisit of Imidazole-Zinc Reverse Stain for Protein Polyacrylamide Gel Electrophoresis .. 139
 Han-Min Chen
18 A One-Step Staining Protocol for In-Gel Fluorescent Visualization of Proteins .. 149
 Jelena Bogdanović Pristov and Ivan Spasojević
19 Ten Minute Stain to Detect Proteins in Polyacrylamide Electrophoresis Gels with Direct Red 81 and Amido Black 159
 J. P. Dean Goldring and Robert G. E. Krause
20 In-Gel Protein Phosphatase Assay Using Fluorogenic Substrates 165
 Isamu Kameshita, Noriyuki Sueyoshi, and Atsuhiko Ishida
21 Detection of Proteins in Polyacrylamide Gels via Prelabeling by Isatoic Anhydride .. 173
 Kazem Asadollahi, Saharnaz Rafiee, and Gholamhossein Riazi
22 Fluorescent Protein Visualization Immediately After Gel Electrophoresis Using an In-Gel Trichloroethanol Photoreaction with Tryptophan. .. 179
 Carol L. Ladner-Keay, Raymond J. Turner, and Robert A. Edwards
23 Direct Immunodetection of Antigens Within the Precast Polyacrylamide Gel .. 191
 Surbhi Desai, Bogusława R. Dworeck, and Marie C. Nlend
24 Zymographic Determination of Intrinsic Specific Activity of Oxidases in the Presence of Interfering Proteins 207
 Tien Canh Le, Mircea Alexandru Mateescu, Samaneh Ahmadifar, Lucia Marcocci, and Paola Pietrangeli
25 A Simple Method for Detecting Phosphorylation of Proteins by Using Zn²⁺-Phos-Tag SDS-PAGE at Neutral pH 223
 Gaurav Kumar
26 Principle and Method of Silver Staining of Proteins Separated by Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis 231
 Gaurav Kumar
27 Heat/Pressure Treatment with Detergents Significantly Increases Curcumin Solubility and Stability: Its Use as an Environment-Friendly Protein Gel Stain ... 237
Biji T. Kurien, Rohit Thomas, Adam Payne, and R. Hal Scofield

28 Fungal Laccase Efficiently Destains Coomassie Brilliant Blue-R-250 Stained Polyacrylamide Gels ... 247
Gaurav Kumar

29 Destaining Coomassie Brilliant Blue-Stained Sodium Dodecyl Sulfate–Polyacrylamide Protein Gels Using a Household Detergent 255
Rachna Aggarwal and Biji T. Kurien

30 Paper Adsorbents Remove Coomassie Blue from Gel Destain and Used Gel Stain in an Environment-Friendly Manner 259
Yaser Dorri and Biji T. Kurien

31 Gel Drying Methods ... 269
Anja Feldmann, Nicole Berndt, Ralf Bergmann, and Michael Bachmann

32 Stained Gels Can Be Stored for Several Months in Nonsealed Polyethylene Bags ... 273
Biji T. Kurien and R. Hal Scofield

33 Radiolabeling and Analysis of Labeled Proteins .. 281
Nicole Berndt, Ralf Bergmann, and Michael Bachmann

Index ... 287
Contributors

RACHNA AGGARWAL • Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, University of Oklahoma, Oklahoma City, OK, USA
SAMANEH AHMADIFAR • Department of Chemistry, Research Chair Allerdys and Centre Pharmaqam-BioMed, Université du Québec à Montréal, Montreal, QC, Canada
CLAUDIA ARNDT • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany
KAZEM ASADOLLAHI • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
MICHAEL BACHMANN • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany
RALF BERGMANN • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany
NICOLE BERNDT • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany
SUNIL K. BERWAL • Cell and Molecular Biology Laboratory, Department of Biotechnology, University of Pune, Pune, India
ENGELBERT BUXBAUM • Kevelaer, Germany
HAN-MIN CHEN • Department of Life Science, Catholic Fu-Jen University, New Taipei City, Taiwan
JUNG-KAP Choi • Laboratory of Analytical Biochemistry, College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
J. DEEPA ARUL PRIYA • Centre for Biotechnology, Anna University, Chennai, India
SURBHI DESAI • Thermo Fisher Scientific, Rockford, IL, USA
K. DIVAKAR • Department of Biotechnology, National Institute of Technology, Warangal, India
WEI-HUA DONG • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China
YASER DORRI • Diabetes and Endocrinology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, University of Oklahoma, Oklahoma City, OK, USA
BOGUSLAWA R. DWORECKI • Thermo Fisher Scientific, Rockford, IL, USA
ROBERT A. EDWARDS • Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
ANJA FELDMANN • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany
PENNATHU GAUTAM • Centre for Biotechnology, Anna University, Chennai, India; AU-KBC Research Centre, Anna University, Chennai, India
Contributors

J. P. DEAN GOldRING • Biochemistry, University of KwaZulu-Natal, Scottsville, South Africa

SUN-YOUNG HWANG • Laboratory of Analytical Biochemistry, College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea

ATSUHIKO ISHIDA • Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan

ISAMU KAMESHITA • Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan

ASHWIN KANNAN • Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, India

STEFANIE KORISTKA • Institute of Radiopharmaceutical Cancer Research, Radioimmunology, Helmholtz-Zentrum Dresden-Rosendorf e.V. (HZDR), Dresden, Germany

ROBERT G. E. KRAUSE • Biochemistry, University of KwaZulu-Natal, Scottsville, South Africa

GAURAV KUMAR • Oklahoma Medical Research Foundation, University of Oklahoma, Oklahoma City, OK, USA

BIJIT KURIEN • Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Arthritis and Clinical Immunology, Oklahoma City, OK, USA

CAROL L. LADNER-KEAY • Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada

TIEN CANH LE • Department of Chemistry, Research Chair Allerds and Centre Pharmaqam-BioMed, Université du Québec à Montréal, Montreal, QC, Canada

JENNIE R. LILL • Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA

LUCIA MARCOCCI • Department of Biochemical Sciences «A. Rossi-Fanelli», Sapienza University of Rome, Rome, Italy

MIRCEA ALEXANDRU MATEESCU • Department of Chemistry, Research Chair Allerds and Centre Pharmaqam-BioMed, Université du Québec à Montréal, Montreal, QC, Canada

PADMAJA MEHTA-D’SOUZA • Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA

NA NA • College of Chemistry, Beijing Normal University, Beijing, People’s Republic of China

G. NANDHINI DEVI • Centre for Biotechnology, Anna University, Chennai, India

VICTOR J. NESATTY • Biomolecular Mass Spectrometry Laboratory, EPFL-FSB-ISIC LSMB, Lausanne, Switzerland; Bio21 Institute, University of Melbourne, Parkville, VIC, Australia

MARIE C. NLEND • Thermo Fisher Scientific, Rockford, IL, USA

JIN OUYANG • College of Chemistry, Beijing Normal University, Beijing, People’s Republic of China

JAYANTA K. PAL • Cell and Molecular Biology Laboratory, Department of Biotechnology, University of Pune, Pune, India; Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India

G. PANNEER SELVAM • Centre for Biotechnology, Anna University, Chennai, India

ADAM PAYNE • Ultrabotanica.com, Oklahoma City, OK, USA
Contributors

Paola Pietrangeli • Department of Biochemical Sciences «A. Rossi-Fanelli», Sapienza University of Rome, Rome, Italy

Jelena Bogdanović Pristov • Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

Saharnaz Rafiee • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

Gholamhossein Riazi • Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

R. Hal Scofield • Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Arthritis and Clinical Immunology, Oklahoma City, OK, USA

Rupali N. Soni • Cell and Molecular Biology Laboratory, Department of Biotechnology, University of Pune, Pune, India

Ivan Spasojević • Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

Noriyuki Sueyoshi • Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan

Pazhani Sundaram • Recombinant Technologies LLC, Cheshire, CT, USA

M. Surya Prabha • Centre for Biotechnology, Anna University, Chennai, India

Rohit Thomas • Diabetes and Endocrinology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, University of Oklahoma, Oklahoma City, OK, USA

Raymond J. Turner • Department of Biological Sciences, University of Calgary, Calgary, AB, Canada

Fang Wang • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China

Tian-Yun Wang • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China

Xu Wang • Laboratory of Analytical Biochemistry, College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China

Jun-He Zhang • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China

Ling-Ye Zhang • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China

Yan-Sheng Zhou • Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China