Preface

In recent years, metabolomics has become an inevitable tool in several clinical research fields, helping to discover new diagnostic markers and molecules and furthering our understanding of pathophysiological processes. Unlike the field of clinical chemistry which today is integrated into many clinical processes, clinical metabolomics is a much more “juvenile” discipline still on its way to become fully integrated into modern health care. Nevertheless, metabolomics is at the core of several very promising initiatives evolving around personalized health care and precision medicine.

Ideally, clinical metabolomics should be seen as a complimentary discipline to clinical chemistry. The much more hypothesis-driven exploratory nature of clinical metabolomics allows it to fill the pipelines of clinical chemistry with novel disease markers and diagnostic patterns. Besides this, clinical metabolomics is very well suited to help clinicians and biologists understand pathophysiological processes in detail, hopefully allowing us to design novel treatment strategies and therapies. Its multidisciplinary nature covering (analytical) chemistry, biology, bioinformatics, and pathology necessitates that scientists from various fields understand each other. Hence, a common fundament for communication is a mandatory prerequisite for the successful embedding of clinical metabolomics into modern disease-related research. When communicating with colleagues from various disciplines, it is of utmost importance to the planning of joint studies that every partner understands the needs and limitations of one another. In multidisciplinary projects, this particularly applies to the fact that each partner should be aware of practical requirements and limitations of the different methods and technologies used. Therefore, exchanging experimental protocols and making colleagues aware of critical practical considerations is of vital importance for a successful study outcome.

With this book, we hope to present a comprehensive compendium of clinical metabolomics protocols covering LC-MS-, GC-MS-, CE-MS-, and NMR-based clinical metabolomics as well as bioinformatics and study design considerations. We hope that this book will serve as the basis for the successful (practical) communication between scientists from several fields, including chemists, biologists, bioinformaticians, and clinicians, ultimately leading to successful study design and completion.

Leiden, The Netherlands

Martin Giera
Contents

Preface ... v
Contributors ... xi

PART I CLINICAL METABOLOMICS AND LIPIDOMICS

1 Metabolomics as a Tool to Understand Pathophysiological Processes 3
Julijana Ivanisevic and Aurelien Thomas
2 Metabolomics in Immunology Research ... 29
Bart Everts

PART II LC-MS-BASED METABOLOMICS

3 LC-MS-Based Metabolomics of Biofluids Using All-Ion Fragmentation (AIF) Acquisition ... 45
Romanas Chaleckis, Shama Naz, Isabel Meister, and Craig E. Wheelock
4 Lipid Mediator Metabolomics Via LC-MS/MS Profiling and Analysis 59
Jesmond Dalli, Romain A. Colas, Mary E. Walker, and Charles N. Serhan
5 UHPSFC/ESI-MS Analysis of Lipids .. 73
Miroslav Lı´ sa and Michal Holcapek
6 LC-MS/MS Analysis of Lipid Oxidation Products in Blood and Tissue Samples ... 83
Yiu Yiu Lee and Jetty Chung-Yung Lee
7 Serum Testosterone by Liquid Chromatography Tandem Mass Spectrometry for Routine Clinical Diagnostics ... 93
Lennart J. van Winden, Olaf van Tellingen, and Huub H. van Rossum
8 LC-MS/MS Analysis of Bile Acids ... 103
Sabrina Krautbauer and Gerhard Liebisch
9 LC-MS/MS Analysis of Triglycerides in Blood-Derived Samples 111
Madlen Reinicke, Susen Becker, and Uta Ceglarek
10 LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide ... 123
Amy A. Rand, Patrick O. Helmer, Bora Inceoglu, Bruce D. Hammock, and Christophe Morisseau
11 Sphingolipid Analysis in Clinical Research ... 135
Bo Buria, Sneha Muralidharan, Markus R. Wenk, and Federico Torta
12 Shotgun Lipidomics Approach for Clinical Samples 163
Lars F. Eggers and Dominik Schwudke
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Establishing and Performing Targeted Multi-residue Analysis for Lipid Mediators and Fatty Acids in Small Clinical Plasma Samples</td>
<td>Theresa L. Pedersen and John W. Newman</td>
<td>175</td>
</tr>
<tr>
<td>14</td>
<td>Chemical Isotope Labeling LC-MS for Human Blood Metabolome Analysis</td>
<td>Wei Han and Liang Li</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>Direct Infusion-Tandem Mass Spectrometry (DI-MS/MS) Analysis of Complex Lipids in Human Plasma and Serum Using the Lipidyzer™ Platform</td>
<td>Baljit K. Ubhi</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>PART III GC-MS-BASED METABOLOMICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Exploratory GC/MS-Based Metabolomics of Body Fluids</td>
<td>Carole Migné, Stéphanie Durand, and Estelle Pujos-Guillot</td>
<td>239</td>
</tr>
<tr>
<td>17</td>
<td>GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples</td>
<td>Lisa R. Hoving, Marieke Heijink, Vanessa van Harmelen, Ko Willems van Dijk, and Martin Giera</td>
<td>247</td>
</tr>
<tr>
<td>18</td>
<td>GC-MS Analysis of Medium- and Long-Chain Fatty Acids in Blood Samples</td>
<td>Lisa R. Hoving, Marieke Heijink, Vanessa van Harmelen, Ko Willems van Dijk, and Martin Giera</td>
<td>257</td>
</tr>
<tr>
<td>19</td>
<td>Analysis of Oxysterols</td>
<td>Fabien Riols and Justine Bertrand-Michel</td>
<td>267</td>
</tr>
<tr>
<td>20</td>
<td>Analysis of Metabolites from the Tricarboxylic Acid Cycle for Yeast and Bacteria Samples Using Gas Chromatography Mass Spectrometry</td>
<td>Reza Maleki Seifar, Angela ten Pierick, and Patricia T.N. van Dam</td>
<td>277</td>
</tr>
<tr>
<td>21</td>
<td>GC-MS Analysis of Lipid Oxidation Products in Blood, Urine, and Tissue Samples</td>
<td>Anne Barden and Trevor A. Mori</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>PART IV CE-MS-BASED METABOLOMICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Metabolic Profiling of Urine by Capillary Electrophoresis-Mass Spectrometry Using Non-covalently Coated Capillaries</td>
<td>Rawi Ramautar</td>
<td>295</td>
</tr>
<tr>
<td>23</td>
<td>CE-MS for the Analysis of Amino Acids</td>
<td>Karina Trevisan Rodrigues, Marina Franco Maggi Tavares, and Ann Van Schepdael</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>PART V NMR-BASED METABOLOMICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NMR Analysis of Fecal Samples</td>
<td>Hye Kyong Kim, Sarantos Kostidis, and Young Hae Choi</td>
<td>317</td>
</tr>
</tbody>
</table>
25 Quantitative Analysis of Central Energy Metabolism in Cell Culture Samples .. 329
 Sarantos Kostidis

PART VI MALDI-BASED TECHNIQUES AND MASS SPECTROMETRY IMAGING OF CLINICAL SAMPLES

26 Mass Spectrometry Imaging of Metabolites .. 345
 Benjamin Balluff and Liam A. McDonnell

PART VII STUDY DESIGN, DATA ANALYSIS, AND BIOINFORMATICS

27 Quality-Assured Biobanking: The Leiden University Medical Center Model .. 361
 Rianne Haumann and Hein W. Verspaget

28 Extracting Knowledge from MS Clinical Metabolomic Data: Processing and Analysis Strategies .. 371
 Julien Boccard and Serge Rudaz

Perspectives .. 385

Index .. 387
Contributors

BENJAMIN BALLUFF . Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands

ANNE BARDEN . Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia

SUSEN BECKER . Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany

JUSTINE BERTRAND-MICHEL . MetaToul-Lipidomic MetaboHUB Core Facility, INSERM U1048, Toulouse Cedex 4, France

JULIEN BOCCARD . School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland

BO BURLA . Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore

UTA CEGLAREK . Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany

ROMANAS CHALECKIS . Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan

YOUNG HAE CHOI . Natural Product Laboratory, Institute of Biology, Leiden University, Leiden, The Netherlands

ROMAIN A. COLAS . Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

JESMOND DALLI . Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK

PATRICIA T.N. VAN DAM . Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands

KO WILLEMS VAN DIJK . Einthoven Laboratory for Experimental Vascular Medicine, Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands

STÉPHANIE DURAND . Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France

LARS F. EGGERS . Division of Bioanalytical Chemistry, Research Center Borstel, Borstel, Germany

BART EVERTS . Department of Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands

MARTIN GIERA . Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
BRUCE D. HAMMOCK • Department of Entomology and Nematology, UC Davis
Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
WEI HAN • Department of Chemistry, University of Alberta, Edmonton, AB, Canada
VANESSA VAN HARMELEN • Einthoven Laboratory for Experimental Vascular Medicine,
Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden,
The Netherlands
RIANNE HAUMANN • Department of Biobanking, Leiden University Medical Center, Leiden,
The Netherlands
MARIJKE HEIJINK • Center for Proteomics and Metabolomics, Leiden University Medical
Center (LUMC), Leiden, The Netherlands
PATRICK O. HELMER • Institute of Inorganic and Analytical Chemistry, University of
Münster, Münster, Germany
MICHAL HOLČAPEK • Department of Analytical Chemistry, Faculty of Chemical Technology,
University of Pardubice, Pardubice, Czech Republic
LISA R. HOVING • Einthoven Laboratory for Experimental Vascular Medicine, Department of
Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
BORA INCEOGLU • Department of Entomology and Nematology, UC Davis Comprehensive
Cancer Center, University of California, Davis, Davis, CA, USA
JULIJANA IVANISEVIC • Metabolomics Platform, Faculty of Biology and Medicine, University of
Lausanne, Lausanne, Switzerland
HYE KYONG KIM • Natural Product Laboratory, Institute of Biology, Leiden University,
Leiden, The Netherlands
SARANTOS KOSTIDIS • Center for Proteomics and Metabolomics, Leiden University Medical
Center (LUMC), Leiden, The Netherlands
SABRINA KRAUTBAUER • Institute of Clinical Chemistry and Laboratory Medicine, University
of Regensburg, Regensburg, Germany
JETTY CHUNG-YUNG LEE • School of Biological Sciences, The University of Hong Kong, Hong
Kong, SAR, China
YIU YIU LEE • School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
LIANG LI • Department of Chemistry, University of Alberta, Edmonton, AB, Canada
MIROSLAV LISA • Department of Analytical Chemistry, Faculty of Chemical Technology,
University of Pardubice, Pardubice, Czech Republic
GERHARD LIEBISCH • Institute of Clinical Chemistry and Laboratory Medicine, University of
Regensburg, Regensburg, Germany
LIAM A. McDONNELL • Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
ISABEL MEISTER • Division of Physiological Chemistry 2, Department of Medical Biochemistry
and Biophysics, Karolinska Institutet, Stockholm, Sweden; Gunma University Initiative for
Advanced Research (GIAR), Gunma University, Gunma, Japan
CAROLE MIGNÉ • Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration
du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
TREVOR A. MORI • Medical School, Royal Perth Hospital Unit, University of Western
Australia, Perth, WA, Australia
CHRISTOPHE MORISSEAU • Department of Entomology and Nematology, UC Davis
Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
SNEHA MURALIDHARAN • Singapore Lipidomics Incubator (SLING), Department of
Biological Sciences, National University of Singapore, Singapore, Singapore
SHAMA NAZ • Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
JOHN W. NEWMAN • Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, University of California, Davis, Davis, CA, USA; Department of Nutrition, University of California, Davis, Davis, CA, USA; NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
THERESA L. PEDERSEN • Advanced Analytics, Woodland, CA, USA
ANGELA TEN PIERICK • BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
ESTELLE PUJOS-GUILLOT • Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
RAWI RAMAUTAR • Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
AMY A. RAND • Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
MADLEN REINICKE • Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
FABIEN RIOLS • MetaToul-Lipidomic MetaboHUB Core Facility, INSERM U1048, Toulouse Cedex 4, France
KARINA TREVISAN RODRIGUES • Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven-University of Leuven, Leuven, Belgium
Huib H. van Rossum • Laboratory of Clinical Chemistry and Hematology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
SERGE RUDAZ • School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Universities of Basel and Geneva, Basel, Switzerland
ANN VAN SCHEPDAEL • Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven-University of Leuven, Leuven, Belgium
DOMINIK SCHWUDKE • Division of Bioanalytical Chemistry, Research Center Borstel, Borstel, Germany
REZA MALEKI SEIFAR • Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; DSM Food Specialties B.V., Delft, The Netherlands
CHARLES N. SERHAN • Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
MARINA FRANCO MAGGI TAVARES • Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
OLAF VAN TELLINGEN • Laboratory of Clinical Chemistry and Hematology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
AURELIEN THOMAS • Unit of Toxicology, CURML, CHUV Lausanne University Hospital, HUG Geneva University Hospitals, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
FEDERICO TORTA • Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
Contributors

Baljit K. Ubhi • SCIEX, Redwood City, CA, USA
Hein W. Verspaget • Department of Biobanking, Leiden University Medical Center, Leiden, The Netherlands; Parelsoer Institute, Utrecht, The Netherlands
Mary E. Walker • Lipid Mediator Unit, Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
Markus R. Wenk • Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
Craig E. Wheelock • Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan
Lennart J. van Winden • Laboratory of Clinical Chemistry and Hematology, The Netherlands Cancer Institute, Amsterdam, The Netherlands