Protein Engineering

Methods and Protocols

Edited by

Uwe T. Bornscheuer
Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany

Matthias Höhne
Protein Biochemistry, Institute of Biochemistry, Greifswald University, Greifswald, Germany

Humana Press
Preface

Since the discovery of proteins and their numerous roles in life, scientists are fascinated to study the molecular basis of how proteins function. It is amazing to see the plethora of protein structures and mechanisms that appeared during evolution, and the creativity, which is operating in nature’s continuing process of tailoring and fine-tuning proteins and, thus, life itself.

Proteins, especially enzymes, are also the key players of biocatalysis and biotechnology and thus they are linked to the wealth of our modern society. Besides deepening basic understanding, scientists are attracted by the possibility of knowledge-guided tailoring of proteins to suit the needs of biotechnological applications (rational protein design) or to create novel protein functions. As an alternative to this rationally inspired approach, scientists mimic the process of evolution by introducing random mutations in the laboratory (directed evolution). Although we are far away from understanding and reliably predicting protein folding and function \textit{de novo}, there are remarkable success stories in the field of protein engineering: Enzymes were created that catalyze reactions not observed in nature, they were highly stabilized for robustness in industrial processes, and proteins having superior pharmacological profiles have been successfully created. Hence, protein engineering has become an indispensable tool for pharmaceutical and industrial biotechnology.

Protein engineering is a complex and versatile process. With this book we aim to collect basic and advanced protocols for both stages of protein engineering: (i) the library design phase and (ii) the identification of improved variants by screening and selection. The focus of the book lies on enzyme engineering using rational and semirational approaches. Library creation protocols for random mutagenesis and recombining methods are a very diverse field, and a collection of protocols for this approach has been published recently in the excellent volume \textit{Directed Evolution Library Creation} of this series. Hence, this area is not covered in this edition.

As an introduction, Chapter 1 presents a general introduction into protein engineering. The book is then structured into three parts: \textit{Part I} describes computational protocols for rational protein engineering with the aid of case studies. A review (Chapter 2) summarizes different design approaches and methodologies. Protein tunnel inspection and basic steps of molecular modeling are exemplified using the user-friendly software packages CAVER (Chapter 3) and YASARA (Chapter 4). Chapter 5 demonstrates how to use the FRESCO algorithm to stabilize proteins. The presented guide allows to follow this more complex, but very powerful computational engineering protocol. To study structure–function relationships, one useful experimental approach is to study the so-called mutability landscape of a protein. By characterizing every possible single variant of each amino acid position of a protein, beneficial substitutions and nonmutable residues can be identified. Chapter 6 presents a laboratory protocol for an efficient way how to construct and analyze such a library.

\textit{Part II} focuses on the high-throughput expression of libraries and summarizes common solutions for various problems (Chapters 7 and 8). As a more advanced technique, Chapter 9 presents the split-GFP complementation assay. This approach allows determining the amount of the desired protein via fluorescence measurements in the presence of the entire host proteins. Activity data can then be normalized to the amount of total proteins...
without the need of enzyme purification. Chapter 10 covers expression and functional studies of membrane proteins using *E. coli* and insect cell-free expression systems.

High-throughput screening and selection assays are covered in Part III of this book. This is a very broad research area. Consequently, only exemplary screening protocols can be given as an inspiration for the development of alternative screening assays. An introductory review (Chapter 11) provides an overview of currently existing approaches. The following chapters deal with microplate assays: Chapter 12 describes the design of photometric screening protocols with emphasis on hydrolytic enzymes. Exemplary protocols for screening transaminases, laccases, and β-glucosidase are presented in Chapters 13–15. As screening campaigns have to be well planned and need an efficient way to collect, process, and visualize the data, Chapter 16 describes an open-source software solution that aids experimental planning, but especially data processing and visualization.

The last protocols present solutions for screening and selection procedures. This part of the book covers techniques like solid phase agar plate assays (Chapter 17), droplet sorting (Chapter 18), selection by FACS (Chapter 19), and a growth assays for active and thermostable variants (Chapter 20).

We very much hope that this compilation of concepts, methods, and protocols will help readers to facilitate the planning and performance of their experiments, but most importantly, that they will easily create and discover the desired improved proteins or enzymes. We keep our fingers crossed for success!

Greifswald, Germany
Matthias Höhne
Uwe T. Bornscheuer
Contents

Preface ... v
Contributors... ix

1 Protein Engineering: Past, Present, and Future 1
 Stefan Lutz and Samantha M. Iamurri

PART I COMPUTATIONAL PROTOCOLS

2 Rational and Semirational Protein Design 15
 Ivan V. Korendovych

3 Computational Analysis of Protein Tunnels and Channels 25
 Jan Brezovsky, Barbora Kozlikova, and Jiri Damborsky

4 YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations.. 43
 Henrik Land and Maria Svedendahl Humble

5 A Computational Library Design Protocol for Rapid Improvement of Protein Stability: FRESCO .. 69
 Hein J. Wijma, Maximilian J. L. J. Fürst, and Dick B. Janssen

6 Directed Evolution of Proteins Based on Mutational Scanning 87
 Carlos G. Acevedo-Rocha, Matteo Ferla, and Manfred T. Reetz

PART II PROTEIN LIBRARY EXPRESSION

7 A Brief Guide to the High-Throughput Expression of Directed Evolution Libraries .. 131
 Ana Luísa Ribeiro, Mario Mencía, and Aurelio Hidalgo

8 Library Growth and Protein Expression: Optimal and Reproducible Microtiter Plate Expression of Recombinant Enzymes in E. coli Using MTP Shakers .. 145
 Sandy Schmidt, Mark Dörr, and Uwe T. Bornscheuer

9 Normalized Screening of Protein Engineering Libraries by Split-GFP Crude Cell Extract Quantification 157
 Javier Santos-Aberturas, Mark Dörr, and Uwe T. Bornscheuer

10 Functional Analysis of Membrane Proteins Produced by Cell-Free Translation .. 171
 Srujan Kumar Dondapati, Doreen A. Wüstenhagen, and Stefan Kubick
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Practical Considerations Regarding the Choice of the Best High-Throughput Assay</td>
<td>Carolin Mügge and Robert Kourist</td>
<td>189</td>
</tr>
<tr>
<td>12</td>
<td>High-Throughput Screening Assays for Lipolytic Enzymes</td>
<td>Alexander Fulton, Marc R. Hayes, Ulrich Schwaneberg, Jörg Pietruszka, and Karl-Erich Jaeger</td>
<td>209</td>
</tr>
<tr>
<td>13</td>
<td>Continuous High-Throughput Colorimetric Assays for α-Transaminases</td>
<td>Egon Henson, Jean-Louis Petit, Franck Charmantray, Véronique de Bérardinis, and Thierry Geflaut</td>
<td>233</td>
</tr>
<tr>
<td>14</td>
<td>Colorimetric High-Throughput Screening Assays for the Directed Evolution of Fungal Laccases</td>
<td>Isabel Pardo and Susana Camarero</td>
<td>247</td>
</tr>
<tr>
<td>15</td>
<td>Directed Coevolution of Two Cellulosic Enzymes in Escherichia coli Based on Their Synergistic Reactions</td>
<td>Min Liu, Lidan Ye, and Hongwei Yu</td>
<td>255</td>
</tr>
<tr>
<td>16</td>
<td>Program-Guided Design of High-Throughput Enzyme Screening Experiments and Automated Data Analysis/Evaluation</td>
<td>Mark Dörr and Uwe T. Bornscheuer</td>
<td>269</td>
</tr>
<tr>
<td>17</td>
<td>Solid-Phase Agar Plate Assay for Screening Amine Transaminases</td>
<td>Martin S. Weiß, Uwe T. Bornscheuer, and Matthias Höhne</td>
<td>283</td>
</tr>
<tr>
<td>19</td>
<td>Isolation of pH-Sensitive Antibody Fragments by Fluorescence-Activated Cell Sorting and Yeast Surface Display</td>
<td>Christian Schröter, Simon Krah, Jan Beck, Doreen Könning, Julius Grzeschik, Bernhard Valldorf, Stefan Zielonka, and Harald Kolmar</td>
<td>311</td>
</tr>
<tr>
<td>20</td>
<td>Library Generation and Auxotrophic Selection Assays in Escherichia coli and Thermus thermophilus</td>
<td>Jörg Claren, Thomas Schwab, and Reinhard Sterner</td>
<td>333</td>
</tr>
</tbody>
</table>

Erratum to: Functional Analysis of Membrane Proteins Produced by Cell-Free Translation | E1 |

Index | 347 |
Contributors

CARLOS G. ACEVEDO-ROCHA • Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Mühlheim an der Ruhr, Germany; Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany; Biosyntia ApS, Copenhagen, Denmark

VÉRONIQUE DE BÉRARDINIS • CEA, DSV, IG, Genoscope, Evry, France; CNRS-UMR8030, Evry, France; Université d'Evry Val d’Essonne, Evry, France

JAN BECK • Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Darmstadt, Germany

UWE T. BORNSCHEUER • Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany

JAN BŘEZOVSKÝ • Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic

SUSANA CAMARERO • Centro de Investigaciones Biológicas, CSIC, Madrid, Spain

FRANCK CHARMANTRAY • Institut de Chimie de Clermont-Ferrand, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France; CNRS, UMR6296, ICCF, Aubière, France

JÖRG CLAREN • Clariant Produkte (Deutschland) GmbH, Planegg, Germany

PIERRE-YVES COLIN • Department of Biochemistry, University of Cambridge, Cambridge, UK; Department of Biochemical Engineering, University College London, London, UK

MARK DÖRR • Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany

JIRI DAMBORSKY • Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic

SRUJAN KUMAR DONDAPATI • Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany

MAXIMILIAN J. L. J. FÜRST • Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands

MATTEO FERLA • Department of Biochemistry, Oxford University, Oxford, UK

ALEXANDER FULTON • Institute of Molecular Enzyme Technology, Heinrich-Heine – Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Novozymes A/S, Bagsvaerd, Denmark

THIERRY GEFFLAUT • Institut de Chimie de Clermont-Ferrand, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France; CNRS, UMR6296, ICCF, Aubière, France

FABRICE GIELEN • Department of Biochemistry, University of Cambridge, Cambridge, UK; Living Systems Institute, University of Exeter, Exeter, UK

JULIUS GRZESCHIK • Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany

MATTHIAS HÖHNE • Protein Biochemistry, Institute of Biochemistry, Greifswald University, Greifswald, Germany

ix
Jörg Pietruszka • Institute of Bioorganic Chemistry, Heinrich-Heine - Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
Manfred T. Reetz • Department of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany; Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
Ana Luísa Ribeiro • Department of Molecular Biology, Center for Molecular Biology “Severo Ochoa” (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
Javier Santos-Aberturas • Department of Molecular Microbiology, John Innes Centre, Norwich, UK
Sandy Schmidt • Institute of Molecular Biotechnology, TU Graz, Graz, Austria
Christian Schröter • Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany; Protein Engineering and Antibody Technologies, Merck-Serono, Merck KGaA, Darmstadt, Germany
Thomas Schwab • Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
Ulrich Schwaneberg • Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany; DWI Leibniz-Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany
Reinhard Sterner • Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
Bernhard Valldorff • Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
Doreen A. Wüstenhagen • Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
Martin S. Weiß • Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
Hein J. Wijma • Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
Lidan Ye • Department of Chemical and Biology Engineering, Institute of Bioengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, People’s Republic of China
Hongwei Yu • Department of Chemical and Biology Engineering, Institute of Bioengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, People’s Republic of China
Stefan Zielonka • Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany