Methods in Molecular Biology

Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
Since the publication of the First Edition of *Bacteriophages: Methods and Protocols* in 2009, the field of bacterial virus research has evolved extensively. This can be readily observed from the fact that this latest volume contains all new chapters addressing newly emerging themes and methodologies.

One of the first key trends is the successful and broad-scale introduction of phage-based teaching innovation tools within the field of phage biology and beyond. Most notable in this regard is the “phage hunting program” from the University of Pittsburgh, headed by Dr. Graham Hatfull and the Science Education alliance (SEA). This program has exposed university and high school students across the United States to the scientific method and the joy of bacteriophage discovery.

Phage research is undergoing a clear shift from the microbiological and genomic to the postgenomic era. New phage genome sequences and metavirome analyses are flooding public databases and are revealing new insights into the field of ecology, all supported by new bioinformatics approaches and tools. This type of research has now also reshaped bacterial virus taxonomy from the morphology-driven classification (originally introduced by Professor Hans-Wolfgang Ackermann) to an integrated genome-driven taxonomy, which has gradually been implemented in the last decade. Affordable high-throughput sequencing is now also opening the door to systematic transcriptome analysis using RNaseq, introducing new standard towards experimental validation of gene predictions, genome organization, and the importance of ncRNAs.

This postgenomic era is driven by curiosity of the vast numbers of unknown gene products encoded by phage, also termed the “viral dark matter.” The functional elucidation of the function of these proteins using new state-of-the-art approaches is rekindling research questions which have driven the “Golden Age” of phage research and have led to key advances in biotechnology between the 1950s and 1970s. One may argue that a new generation of researchers is currently emerging which may hopefully lead us into a “Second Golden Age” of phage research. Indeed, the discovery and impact of the CRISPR/cas system and its derived biotechnological techniques is yet again a driving force impacting entire research fields. The CRISPR/cas genome editing tools are just a single example of the impact of phage research on synthetic biology. The advances in our ability to engineer phage in various bacterial hosts provide a scaffold for new and innovative antibacterial design strategies.

Indeed, the last decade has also resulted in the re-evaluation of phage and phage-derived strategies to combat multidrug resistant human pathogens and approaches for the food and agriculture industry. Companies driven/supported by academic research have emerged and develop phage-based antimicrobials (phage therapy, endolysins, ArtiLysins™), the first of which have now entered the market in agriculture and food industry and for human applications (diagnostics, ongoing clinical trials).
All of these developments in phage research have been supported by initiatives from within the research society to organize and broaden its scope. The establishment of the “International Society for Viruses of Microbes” has expanded the community, made it more tightknit, and is coming together through social media initiatives (e.g., PhageBook, “A smaller flea” blog). We hope this edition of *Bacteriophages: Methods and Protocols* will like the previous volumes assist both the established and novice phage scientist.

Leicester, UK
Guelph, ON, Canada
Leuven, Belgium

Martha R.J. Clokie
Andrew M. Kropinski
Rob Lavigne
Contents

Preface ... v
Contributors ... ix

Part I Key Basics of Phage Biology

1 Basic Phage Mathematics .. 1
 Stephen T. Abedon and Tena I. Katsaounis
2 Analysis of Host-Takeover During SPO1 Infection of *Bacillus subtilis* 31
 Charles R. Stewart
3 Practical Advice on the One-Step Growth Curve 41
 Andrew M. Kropinski
4 Iron Chloride Flocculation of Bacteriophages from Seawater 49
 Bonnie T. Poulos, Seth G. John, and Matthew B. Sullivan
5 Purification of Bacteriophages Using Anion-Exchange Chromatography 59
 Dieter Vandenheuvel, Sofie Rombouts, and Evelien M. Adriaenssens
6 Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application .. 71
 Golam S. Islam, Qi Wang, and Parviz M. Sabour
7 Encapsulation of *Listeria* Phage A511 by Alginate to Improve Its Thermal Stability .. 89
 Hanie Ahmadi, Qi Wang, Loong-Tak Lim, and S. Balamurugan
8 Application of a Virucidal Agent to Avoid Overestimation of Phage Kill During Phage Decontamination Assays on Ready-to-Eat Meats 97
 Andrew Chibeu and S. Balamurugan

Part II Sequencing Analysis of Bacteriophages

9 Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes . . . 109
 Daniel A. Russell
10 Identification of DNA Base Modifications by Means of Pacific Biosciences RS Sequencing Technology .. 127
 Philip Kelleher, James Murphy, Jennifer Mahony, and Douwe van Sinderen
11 Analyzing Genome Termini of Bacteriophage Through High-Throughput Sequencing .. 139
 Xianglilan Zhang, Yahui Wang, and Yigang Tong
12 Amplification for Whole Genome Sequencing of Bacteriophages from Single Isolated Plaques Using SISPA .. 165
 Derick E. Fouts
13 Genome Sequencing of dsDNA-Containing Bacteriophages Directly from a Single Plaque .. 179
 Witold Kot
14 Preparing cDNA Libraries from Lytic Phage-Infected Cells for Whole Transcriptome Analysis by RNA-Seq

Bob Blasdel, Pieter-Jan Ceyssens, and Rob Lavigne

PART III PHAGE-RELATED BIOINFORMATICS TOOLS

15 Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis

Ramy Karam Aziz, Hans-Wolfgang Ackermann, Nicola K. Petty, and Andrew M. Kropinski

16 Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview

Welkin H. Pope and Deborah Jacobs-Sera

17 Phage Genome Annotation Using the RAST Pipeline

Katelyn McNair, Ramy Karam Aziz, Gordon D. Pusch, Ross Overbeek, Bas E. Dutilh, and Robert Edwards

18 Visualization of Phage Genomic Data: Comparative Genomics and Publication-Quality Diagrams

Dann Turner, J. Mark Sutton, Darren M. Reynolds, Eby M. Sim, and Nicola K. Petty

PART IV BACTERIOPHAGE GENETICS

19 Transposable Bacteriophages as Genetic Tools

Ariane Toussaint

20 Applications of the Bacteriophage Mu In Vitro Transposition Reaction and Genome Manipulation via Electroporation of DNA Transposition Complexes

Saija Haapa-Paaninen and Harri Savilahti

21 Use of RP4::Mini-Mu for Gene Transfer

Frédérique Van Gijssegem

22 Muprints and Whole Genome Insertion Scans: Methods for Investigating Chromosome Accessibility and DNA Dynamics using Bacteriophage Mu

N. Patrick Higgins

Index
Contributors

STEPHEN T. ABEDON • Department of Microbiology, The Ohio State University, Columbus, OH, USA

HANS-WOLFGANG ACKERMANN • Department of Microbiology, Immunology, and Infectiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada

EVELIEN M. ADRIAENSSENS • Laboratory of Gene Technology, KU Leuven, Leuven, Belgium; Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield, South Africa; Institute of Integrative Biology, University of Liverpool, Liverpool, UK

HANIE AHMADI • Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada; Department of Food Science, University of Guelph, Guelph, ON, Canada

RAMY KARAM AZIZ • Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Argonne National Laboratory, Argonne, IL, USA

S. BALAMURUGAN • Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada; Agropur Dairy Cooperative, Saint-Hubert, QC, Canada

BOB BLASDEL • Laboratory for Gene Technology, KU Leuven, Leuven, Belgium

PIETER-JAN CEYSSENS • Laboratory for Gene Technology, KU Leuven, Leuven, Belgium; Bacterial Diseases, Unit Antibiotic Resistance, Scientific Institute of Public Health, Brussels, Belgium

ANDREW CHIBEU • Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada; Agropur Dairy Cooperative, Saint-Hubert, QC, Canada

BAS E. DUTILH • Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands

ROBERT EDWARDS • Computational Sciences Research Center, San Diego State University, San Diego, CA, USA; Department of Biology, San Diego State University, San Diego, CA, USA; Department of Computer Science, San Diego State University, San Diego, CA, USA

DERICK E. FOUTS • J. Craig Venter Institute, Rockville, MD, USA

FREDERIQUE VAN GIJSEGEM • Institute of Ecology and Environmental Sciences of Paris, INRA UMR1392, UPMC barre 44-45 CC 237, Paris Cedex, France

SAIJA HAAPA-PAANANEN • Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland

N. PATRICK HIGGINS • Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA

GOLAM S. ISLAM • Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada

DEBORAH JACOBS-SERA • Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

SETH G. JOHN • Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA

TENA I. KATSOUNIS • Department of Mathematics, The Ohio State University, Columbus, OH, USA

PHILIP KELLEHER • School of Microbiology, University College Cork, Cork, Ireland
Witold Kot, Department of Environmental Science, Aarhus University, Roskilde, Denmark
Andrew M. Kropinski, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada; Department of Pathobiology, University of Guelph, Guelph, ON, Canada; Department of Food Science, University of Guelph, Guelph, ON, Canada
Rob Lavigne, KU Leuven, Laboratory for Gene Technology, Leuven, Belgium
Loong-Tak Lim, Department of Food Science, University of Guelph, Guelph, ON, Canada
Jennifer Mahony, School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
Katelyn McNair, Computational Sciences Research Center, San Diego State University, San Diego, CA, USA
James Murphy, School of Microbiology, University College Cork, Cork, Ireland
Ross Overbeek, Argonne National Laboratory, Argonne, IL, USA
Nicola K. Petty, The i three Institute, University of Technology Sydney, Sydney, NSW, Australia
Welkin H. Pope, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
Bonnie T. Poulos, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
Gordon D. Pusch, Argonne National Laboratory, Argonne, IL, USA
Darren M. Reynolds, Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
Sofie Rombouts, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
Daniel A. Russell, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
Parviz M. Sabour, Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
Harri Savilahti, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
Eby M. Sim, The i three institute, University of Technology Sydney, Sydney, NSW, Australia
Douwe van Sinderen, School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
Charles R. Stewart, Department of BioSciences, Rice University, Houston, TX, USA
Matthew B. Sullivan, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA; Department Microbiology, The Ohio State University, Columbus, OH, USA
J. Mark Sutton, Public Health England, Salisbury, Wiltshire, UK
Yigang Tong, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
Ariane Toussaint, Laboratoire de Génétique et Physiologie bactérienne (LGPB), Université Libre de Bruxelles, Charleroi, Belgium
Dann Turner, Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
Dieter VandenHeuvel, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
QI WANG • Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada

YAHUI WANG • State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China

XIANGLILAN ZHANG • State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China