Natural Antibodies

Methods and Protocols

Edited by

Srinivas V. Kaveri
Centre de Recherche des Cordeliers
INSERM, PARIS
Paris, France

Jagadeesh Bayry
Centre de Recherche des Cordeliers
INSERM, PARIS
Paris, France
Natural antibodies, belonging to isotypes IgM, IgG, and IgA, were discovered nearly half a century ago. Natural antibodies are those that are detected in the serum of healthy organisms in the absence of pathology or intentional immunization. Most natural antibodies bind to one or more autoantigens and are called as natural autoantibodies. The importance of natural autoantibodies in immune regulation and in therapeutic application is now well established.

The role of natural antibodies in antigen presentation, pathogen elimination, cell survival and homeostasis, inflammation, cancer, and autoimmunity is exhaustively documented. While the basic properties of natural antibodies, origin, distribution, evolution in physiology and pathology, and functions were the subjects of thorough investigations, in parallel, a large body of highly interesting information has been generated on the methodology of isolation, identification, characterization, and quantification of natural antibodies in various situations. In this edition, we have gathered protocols from experts who have made significant contribution in this domain.

An overview of the progress in the understanding of the functions of natural antibodies is summarized by Heinz Kohler. Three chapters focus on the protocols for isolation of natural antibodies: while Vogel and Horn provide methods for purifying anti-FcεRIα autoantibodies from serum, Schneider and colleagues describe methods for separation of natural antibodies from human plasma, saliva, breast milk, and gastrointestinal fluid, and Kolarova and colleagues present protocols for purification of natural antibodies against tau protein. Bannoudi and colleagues detail protocols for unbiased RACE-based massive parallel surveys of human IgA antibody repertoires. In view of the role of natural antibodies in B cell survival and homeostasis, Huo and colleagues present protocols for the assessment of signaling events in B-1a cells, while Mohr and Lino narrate how microbiota influences the B1 and MZ B-cell numbers by the normal polyreactive immunoglobulins.

Certain intriguing functional properties of natural antibodies such as their anti-tumor cytotoxic activity (Schwartz-Albiez and Dill), hydrolysis and dissolution of their target antigens (Meretoja and colleagues), and the ability of natural antibodies to undergo enhanced polyreactivity (Lecerf and colleagues) are elaborated in subsequent chapters. Natural IgM antibodies recognizing oxidation-specific epitopes on circulating microvesicles (Pulm and Binder) and oxidized low-density lipoprotein and Aggregatibacter actinomyces-comitans (Wang and Hörkkö) are discussed in the ensuing sections. Relevance of serological diagnosis of microbial antigens is discussed by Jiménez-Minguía and colleagues and detection of naturally occurring human antibodies against gangliosides is then narrated by Hernández and Rodríguez-Zhurbenko. Adenoviral vectors are the most widely used class of gene therapy vector in clinical trials. It is important to underline the role of natural antibodies in inhibiting viral vectors even in the absence of prior exposure to the virus. Thus, Xu and colleagues examine the protocols for evaluation of impact of natural IgM on adenovirus type 5 gene therapy vectors.
We are indebted to all the colleagues who shared time, energy, and experience for writing these protocols and to John Walker, the series editor, for his constant advice and support. We hope that the protocol series is highly helpful for laboratory approach to study the interesting features of natural antibodies.

Paris, France

Srinivas V. Kaveri
Jagadeesh Bayry
Contents

Preface ... v
Contributors .. ix

1 Natural Antibodies: Next Steps Toward Translational Investigation 1
 Heinz Kohler

2 Isolation of Natural Anti-FcεRIα Autoantibodies from Healthy Donors 5
 Monique Vogel and Michael P. Horn

3 Isolation of Antibodies from Human Plasma, Saliva, Breast Milk, and Gastrointestinal Fluid. ... 23
 Christoph Schneider, Marlies Illi, Marius Lütscher, Marc Wehrli, and Stephan von Gunten

4 Purification of Natural Antibodies Against Tau Protein by Affinity Chromatography .. 33
 Michala Krestova, Lenka Hromadkova, and Jan Riey

5 Unbiased RACE-Based Massive Parallel Surveys of Human IgA Antibody Repertoires .. 45
 Hanane El Bannoudi, Céline Anquetil, Marc J. Braunstein, Sergei L. Kosakovsky Pond, and Gregg J. Silverman

6 Analysis of Signaling Events in B-1a Cells 75
 Jianxin Huo, Yuhan Huang, Shengli Xu, and Kong-Peng Lam

7 Exploring the Role of Microbiota in the Limiting of B1 and MZ B-Cell Numbers by Naturally Secreted Immunoglobulins 85
 Elodie Mohr and Andreia C. Lino

8 Assessment of Anti-Tumor Cytotoxic Activity of Naturally Occurring Antibodies in Human Serum or Plasma 105
 Reinhard Schwartz-Albiez and Othmar Dill

9 Hydrolysis and Dissolution of Amyloids by Catabodies 111
 Ville V. Meretoja, Sudhir Paul, and Stephanie A. Planque

10 Methods for Posttranslational Induction of Polyeptivity of Antibodies 135
 Maxime Lecerf, Anaelle Jarossay, Srinivas V. Kaveri, Sébastien Lacroix-Desmazes, and Jordan D. Dimitrov

11 Characterization of Natural IgM Antibodies Recognizing Oxidation-Specific Epitopes on Circulating Microvesicles 147
 Florian Puhm and Christoph J. Binder

12 Natural Monoclonal Antibody to Oxidized Low-Density Lipoprotein and Aggregatibacter actinomycetemcomitans 155
 Chenguang Wang and Sobvi Hörkkö
Detection of Natural Antibodies and Serological Diagnosis of Pneumococcal Pneumonia Using a Bead-Based High-Throughput Assay.
Irene Jiménez-Munguía, Willem J.B. van Wamel, Manuel J. Rodríguez-Ortega, and Ignacio Obando

Detection of Naturally Occurring Human Antibodies Against Gangliosides by ELISA.
Ana María Hernández and Nely Rodríguez-Zhurbenko

Evaluating the Impact of Natural IgM on Adenovirus Type 5 Gene Therapy Vectors.
Zhili Xu, Jie Tian, Andrew W. Harmon, and Andrew P. Byrnes

Erratum to: Hydrolysis and Dissolution of Amyloids by Catabodies.

Index
Contributors

CÉLINE ANQUETIL • Department of Medicine, NYU School of Medicine, New York, NY, USA
HANANE EL BANNoudi • Department of Medicine, NYU School of Medicine, New York, NY, USA
CHRISTOPH J. Binder • Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
MARC J. BRAUNSTEIN • Department of Medicine, NYU School of Medicine, New York, NY, USA
ANDREW P. BYRNES • Division of Cellular and Gene Therapies, Center for Biologies Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
OTHMAR DILL • Target GmbH, Worms, Germany
JORDAN D. Dimitrov • Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, INSERM, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Paris, France
STEPHAN von GUNTEN • Institute of Pharmacology, University of Bern, Bern, Switzerland
ANDREW W. Harmon • Division of Cellular and Gene Therapies, Center for Biologies Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
ANA MARÍA HERNÁNDEZ • Center for Molecular Immunology, Havana, Cuba
SOHVI HÖRKKÖ • Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
MICHAEL P. HORN • University Institute of Clinical Chemistry and Center of Laboratory Medicine, University Hospital of Bern, Inselspital, Bern, Switzerland
LENKA HROMADKOVA • National Institute of Mental Health, Klecany, Czech Republic
YUHAN HUANG • Immunology Group, Bioprocessing Technology Institute, A-STAR, Singapore, Singapore
JIANXIN HUO • Immunology Group, Bioprocessing Technology Institute, A-STAR, Singapore, Singapore
MARLIES ILLI • Research and Development, CSL Behring AG, Bern, Switzerland
ANNAELLE JAROSSAY • Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, INSERM, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Paris, France
IRENE JIMÉNEZ-MUNGUIÁ • Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain; Campus de Excelencia Internacional CeIA3, Córdoba, Spain
SRINIVAS V. KAVERI • Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, INSERM, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Paris, France
HEINZ KOHLER • Department of Microbiology and Immunology, University of Kentucky, Lexington, KY, USA; Immpheron Inc., Lexington, KY, USA
 Contributors

MICHALA KRESTOVA • National Institute of Mental Health, Klecany, Czech Republic
SÉBASTIEN LACROIX-DESMAZES • Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, INSERM, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Paris, France
KONG-PENG LAM • Immunology Group, Bioprocessing Technology Institute, A-STAR, Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
MAXIME LECERF • Centre de Recherche des Cordeliers, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, INSERM, UMR_S 1138, Paris, France; Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Paris, France
ANDREIA C. LINO • Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
MARIUS LÖTSCHER • Research and Development, CSL Behring AG, Bern, Switzerland
VILLE V. MERETOJA • Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
ELODIE MOHR • Department of Pathology and Immunology, CMU, Genève, Switzerland
IGNACIO ORANDO • Sección de Enfermedades Infecciosas Pediátricas e Inmunopatologías, Hospital Universitario Virgen del Rocío, Sevilla, Spain
SUDHIR PAUL • Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
STEPHANIE A. PLANQUE • Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
SERGEI L. KOSAKOVSKY POND • Temple University, Philadelphia, PA, USA
FLORIAN PUHM • Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
JAN RICNY • National Institute of Mental Health, Klecany, Czech Republic
MANUEL J. RODRÍGUEZ-ORTEGA • Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain; Campus de Excelencia Internacional CeiA3, Universidad de Córdoba, Córdoba, Spain
NELY RODRÍGUEZ-ZHURBENKO • Center for Molecular Immunology, Havana, Cuba
CHRISTOPH SCHNEIDER • Institute of Pharmacology, University of Bern, Bern, Switzerland
REINHARD SCHWARTZ-ALBIEZ • Clinical Cooperation Unit Applied Tumor Immunity, Deutsches Krebsforschungszentrum, Heidelberg, Germany
GREGG J. SILVERMAN • Department of Medicine, NYU School of Medicine, Alexandria Center for Life Science, New York, NY, USA
JIE TIAN • Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
MONIQUE VOGEL • University Clinic of Rheumatology, Immunology and Allergology, University Hospital of Bern, Inselspital, Bern, Switzerland
WILLEM J.B. VAN WAMEL • Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
CHUNGUANG WANG • Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland

MARC WEHLRI • Institute of Pharmacology, University of Bern, Bern, Switzerland

SHENGLI XU • Immunology Group, Bioprocessing Technology Institute, A-STAR, Singapore, Singapore

ZHILI XU • Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA