Cover image: Photoactivated localization microscopy (Palm) detecting a bacterial membrane protein. Shown is a Bacillus subtilis cell expressing FloA-mNeonGreen. FloA is a bacterial flotillin-like protein, involved in membrane compartmentalization. Palm images were acquired in TIRF. Detected signals were filtered for PSF width (100–200 nm) and photon count (200–1000 photons). The average localization precision of detected FloA-mNeonGreen molecules is 25 nm.
Recent achievements, such as the development of a new generation of nanoscopes surpassing the Abbe’s diffraction limit or high-resolution approaches for deep imaging, such as light-sheet or two-photon excitation microscopy, have revolutionized light microscopy. In addition to the progress made in optical systems, novel genetically encoded fluorescent reporters and labeling methods allow investigation of biological processes as never previously achieved. Equally important, the information collected from imaging experiments has been dramatically augmented by the development and optimization of a plethora of image analysis tools and computational solutions that provide unbiased and systematic quantitative imaging. Today, therefore, light microscopy encompasses an extraordinary range of applications that can meet the needs of any biological system under investigation.

In this regard, we aimed at creating a book, which functions as a roundup user manual, addressing up-to-date light microscopy approaches and toolsets offered for live or fixed cell observations. Imaging strategies outlined in this book include confocal laser scanning and spinning disk confocal microscopy, FRET (fluorescence resonance energy transfer), FRAP (fluorescence recovery after photobleaching) and laser microsurgery experiments, light-sheet and two-photon excitation microscopy, PALM (photactivated localization microscopy), STED (stimulated emission depletion), TIRF (total internal reflection fluorescence), and optical coherence microscopy. Here we describe the use of these imaging methodologies to study properties of a multitude of biomolecular targets in a broad range of model systems, ranging from bacteria over tissue to whole animal imaging.

These advanced fluorescence light microscopy methods are exploited to pinpoint and track single molecules, visualize and follow individual cells in living animals or plants, monitor biomolecular spatiotemporal dynamics, or obtain super-resolved images at nanometer resolution. Focus is placed on system instrumentation parameters providing step-by-step guidelines for microscope and experimental setup, as well as sample preparation protocols. Moreover, sophisticated labeling and detection methods are introduced, including tissues clearing, genetically encoded voltage indicators, reciprocal probes, or biosensors. Finally, detailed workflows on data analysis and data quantification are presented dependent on the imaging setup, target, or biological process of interest, including automated and high-content analyses.

This book can offer to the inexperienced user the possibility of a straightforward strategy to address biological questions by selecting the appropriate imaging system, preparation protocol, and data evaluation method based on the experimental model available. In parallel we are wishing to reinforce the experienced user with a variety of additional cutting-edge applications that can be complementary to routine practices and can increase the array of acquired observations and datasets. Finally, we anticipate that the book will additionally prove to be a robust teaching guide for light microscopy practical courses.

Editing this book has been a lengthy but most enjoyable quest. Firstly, we would like to thank our authors who accepted our invitation and generously introduced their expertise and protocols to the scientific community, while patiently went over revisions. We have been overwhelmed with the information and detailed methodologies, as well as image quality...
included in the manuscripts, which have indeed exceeded our original expectations. We are familiar with the pains and joys of image acquisition and analysis and we are grateful for their efforts and dedication in bringing this work forward. Further, we would like to thank our series editor Prof. John M. Walker for his critical advice and help on the book preparation, as well as the staff at Humana Press for inviting us and greatly assisting us to edit this book and for giving us the opportunity to produce what we feel is today’s Light Microscopy. Happy imaging!

Los Angeles, CA, USA
Martinsried, Germany
Yolanda Markaki
Hartmann Harz
Contents

Preface .. v
Contributors ... ix

1 Introduction to Modern Methods in Light Microscopy 1
 Joel Ryan, Abby R. Gerhold, Vincent Boudreau, Lydia Smith,
 and Paul S. Maddox

PART I ADVANCED FLUORESCENCE MICROSCOPY: SAMPLE PREPARATION,
 FLUOROPHORES AND MODEL SYSTEMS

2 Three-Dimensional Live Imaging of Filamentous Fungi
 with Light Sheet-Based Fluorescence Microscopy (LSFM) 19
 Francesco Pampaloni, Laura Knuppertz, Andrea Hamann,
 Heinz D. Osiewacz, and Ernst H.K. Stelzer

3 Light-Sheet Fluorescence Microscopy: Chemical Clearing
 and Labeling Protocols for Ultramicroscopy 33
 Nina Jähring, Klaus Becker, Saeideh Sagahi, and Hans-Ulrich Dodt

4 Two-Photon Intravital Microscopy Animal Preparation Protocol
 to Study Cellular Dynamics in Pathogenesis 51
 Erinke van Grinsven, Chloé Prunier, Nienke Vrisekoop,
 and Laila Ritsma

5 Imaging of Brain Slices with a Genetically Encoded Voltage Indicator 73
 Peter Quicke, Samuel J. Barnes, and Thomas Knöpfel

6 FRET Microscopy for Real-Time Visualization of Second Messengers
 in Living Cells ... 85
 Axel E. Kraft and Viacheslav O. Nikolaev

7 Imaging the Dynamics of Cell Wall Polymer Deposition
 in the Unicellular Model Plant, Penium margaritaceum 91
 David Domoszych, Anna Lietz, Molly Patten, Emily Singer, Berke Tinaz,
 and Sandra C. Raimundo

8 Targeted Ablation Using Laser Nanosurgery 107
 Naga Venkata Gayathri Vegesna, Paolo Ronchi, Sevi Durdu,
 Stefan Terjung, and Rainer Pepperkok

PART II SUPER AND HIGH-RESOLUTION OPTICAL IMAGING

9 Sample Preparation and Choice of Fluorophores for Single
 and Dual Color Photo-Activated Localization Microscopy (PALM)
 with Bacterial Cells ... 129
 Juri N. Bach, Giacomo Giacomelli, and Marc Bramkamp
Part II \textbf{Advanced Imaging Techniques}

10 STED Imaging in \textit{Drosophila} Brain Slices ... 143
\textbf{Sandra Fendl, Jesus Pujol-Marti, Joel Ryan, Alexander Borst, and Robert Kasper}

11 Two-Color Total Internal Reflection Fluorescence Microscopy of Exocytosis in Endocrine Cells .. 151
\textbf{Adam J. Trexler and Justin W. Taraska}

12 Optical Coherence Microscopy ... 167
\textbf{Rainer A. Leitgeb}

\textbf{Part III \ \textbf{Quantitative and Computational Image Analysis}}

13 Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach ... 185
\textbf{Ignacio Arganda-Carreras and Philippe Andrey}

14 Automated Analysis of Intracellular Dynamic Processes .. 209
\textbf{Yao Yao, Ibor Smal, Ilya Grigoriev, Maud Martin, Anna Akhmanova, and Erik Meijering}

15 Quantitative Image Analysis of Single-Molecule mRNA Dynamics in Living Cells .. 229
\textbf{Jose Rino, Ana C. de Jesus, and Maria Carmo-Fonseca}

16 Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP) .. 243
\textbf{Nickolaos Nikiforos Giakoumakis, Maria Anna Rapsomaniki, and Zoi Lygerou}

17 Fluorescence-Based High-Throughput and Targeted Image Acquisition and Analysis for Phenotypic Screening .. 269
\textbf{Manuel Gunkel, Jan Philipp Eberle, and Holger Erfle}

Index ... 281
Contributors

Anna Akhmanova • Department of Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
Philippe Andrey • Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France; Sorbonne Universités, UPMC Univ Paris 06, Paris, France
Ignacio Arganda-Carreras • Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Computer Science and Artificial Intelligence Department, Basque Country University (UPV/EHU), Donostia-San Sebastian, Spain; Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
Juri N. Bach • Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
Samuel J. Barnes • Division of Brain Sciences, Imperial College London, London, UK
Klaus Becker • Department of Bioelectronics, FKE, Vienna University of Technology, Vienna, Austria; Center of Brain Research, Medical University of Vienna, Vienna, Austria
Alexander Borst • Max Planck Institute of Neurobiology, Munich, Germany
Vincent Boudreau • University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Marc Bramkamp • Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
Maria Carmo-Fonseca • Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
Hans-Ulrich Dött • Department of Bioelectronics, FKE, Vienna University of Technology, Vienna, Austria; Center of Brain Research, Medical University of Vienna, Vienna, Austria
David Domozycz • Department of Biology, Skidmore College, Saratoga Springs, NY, USA
Sevi Durdu • Cell Biology Cell Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany
Jan Philipp Eberle • BioQuant Center, ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg, Heidelberg, Germany
Holger Erle • BioQuant Center, ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg, Heidelberg, Germany
Sandra Fendl • Max Planck Institute of Neurobiology, Munich, Germany
Abby R. Gerhold • Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
Giacomo Giacomelli • Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
Nickolaos Nikiforos Giakoumakis • Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, Greece
Ilya Grigoriev • Department of Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
Erienne van Grinsven • Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
Contributors

Manuel Gunkel • BioQuant Center, ViroQuant-CellNetworks RNAi Screening Facility, University of Heidelberg, Heidelberg, Germany

Andrea Hamann • Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

Nina Jährling • Department of Bioelectronics, FKE, Vienna University of Technology, Vienna, Austria; Center of Brain Research, Medical University of Vienna, Vienna, Austria

Ana C. de Jesus • Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal

Robert Kasper • Max Planck Institute of Neurobiology, Munich, Germany

Thomas Knöpfel • Centre for Neurotechnology, Imperial College London, London, UK; Division of Brain Sciences, Imperial College London, London, UK

Laura Knuppertz • Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

Axel E. Kraft • Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Rainer A. Leitgeb • Christian Doppler Laboratory OPTRAMED, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria

Anna Lietz • Department of Biology, Skidmore College, Saratoga Springs, NY, USA

Zoi Lygerou • Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, Greece

Paul S. Maddox • Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Maud Martin • Department of Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands

Erik Meijering • Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands

Viacheslav O. Nikolaev • Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Heinz D. Osiewacz • Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

Francesco Pampaloni • Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

Molly Patten • Department of Biology, Skidmore College, Saratoga Springs, NY, USA

Rainer Pepperkok • Cell Biology and Cell Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany; Advanced Light Microscopy Facility, EMBL Heidelberg, Heidelberg, Germany

Chloé Prunier • Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands

Jesús Puigol-Martí • Max Planck Institute of Neurobiology, Munich, Germany

Peter Quicke • Department of Bioengineering, Imperial College London, London, UK; Centre for Neurotechnology, Imperial College London, London, UK; Division of Brain Sciences, Imperial College London, London, UK
Sandra C. Raimundo • *Department of Biology, Skidmore College, Saratoga Springs, NY, USA*

Maria Anna Rapsomaniki • Laboratory of Biology, School of Medicine, University of Patras, Rio, Patras, Greece; IBM Research Zurich, Rüschlikon, Switzerland

José Rino • *Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal*

Laila Ritsma • Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands

Paolo Ronchi • *Cell Biology Cell Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany; Electron Microscopy Core Facility, EMBL Heidelberg, Heidelberg, Germany*

Joel Ryan • LMU Munich, Biocenter Martinsried, Munich, Germany

Saiedeh Saghafi • *Department of Bioelectronics, FKE, Vienna University of Technology, Vienna, Austria; Center of Brain Research, Medical University of Vienna, Vienna, Austria*

Emily Singer • Department of Biology, Skidmore College, Saratoga Springs, NY, USA

Ihor Smal • Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands

Lydia Smith • University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Ernst H.K. Stelzer • Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany

Justin W. Taraska • Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA

Stefan Terjung • Advanced Light Microscopy Facility, EMBL Heidelberg, Heidelberg, Germany

Berke Tinaz • Department of Biology, Skidmore College, Saratoga Springs, NY, USA

Adam J. Trexler • Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA

Naga Venkata Gayathri Vegesna • *Cell Biology and Cell Biophysics Unit, EMBL Heidelberg, Heidelberg, Germany*

Nienke Vrieseboop • Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands

Yao Yao • Departments of Medical Informatics and Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands