Series Editor
John M. Walker
School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, AL10 9AB, UK

For further volumes:
http://www.springer.com/series/7651
Mycotoxigenic Fungi

Methods and Protocols

Edited by

Antonio Moretti
Institute of Sciences of Food Production,
National Research Council, Bari, Italy

Antonia Susca
Institute of Sciences of Food Production,
National Research Council, Bari, Italy
Mycotoxins are toxic fungal metabolites that cause severe health problems in humans and animals after exposure to contaminated food and feed, having a broad range of toxic effects, including carcinogenicity, neurotoxicity, and reproductive and developmental toxicity. The United Nations Commission on Sustainable Development approved in 1996 a work program on indicators of sustainable development that included mycotoxins in food as one of the components related to protection and promotion of human health.

From that program, the concern due to mycotoxin contamination of agro-food crops is in continuous growth worldwide since the level of their occurrence in final products is still high and the consequent impact on human and animal health significant. Moreover, the economic costs for the whole agricultural sector can be enormous, even in developed countries as shown by the losses in the United States alone that can be around $5 billion per annum. Different approaches have been used in mycotoxin research through years. First, implications of mycotoxins in humans were investigated in medicine; later agro-ecological aspects and the fundamental mystery of the biological role for production of secondary metabolites are still analyzed. Regulatory limits, imposed in about 80 countries to minimize human and animal exposure to mycotoxins, also have tremendous economic impact on international trading and must be developed using science-based risk assessments, such as expensive analytical methods used to detect mycotoxins eventually occurring in food and feed. On the other hand, decontamination strategies for mycotoxins in foods and feeds include treatments that could show inappropriate results because nutritional and organoleptic benefits could be deteriorated by the process. Alternatively, programs of mycotoxin prevention and control could be applied through evaluating the contamination of foodstuffs by the related mycotoxin-producing fungi and therefore screening the potential mycotoxin risk associated.

Because mycotoxins are produced within certain groups of fungi, the understanding of their population biology, speciation, phylogeny, and evolution is a key aspect for establishing well-addressed mycotoxin reduction programs. This perspective is of fundamental importance to the correct identification of the mycotoxigenic fungi, since each species/genus can have a species-specific mycotoxin profile which would change the health risks associated with each fungal species. The previous use of comparative morphology has been quickly replaced in the last two decades by comparative DNA analyses that provide a more objective interpretation of data. Advances in molecular biology techniques and the ability to sequence DNA at very low cost contributed to the development of alternative techniques to assess possible occurrence of mycotoxins in foods and feeds based on fungal genetic variability in conserved functional genes or regions of taxonomical interest, or by focusing on the mycotoxigenic genes and their expression. The possibility of using a highly standardized, rapid, and practical PCR-based protocol that can be easily used both by researchers and by nonexperts for practical uses is currently available for some species/mycotoxins and hereby proposed. Further progress in transcriptomics, proteomics, and metabolomics will continue to advance the understanding of fungal secondary metabolism.
and provide insight into possible actions to reduce mycotoxin contamination of crop plants and the food/feed by-products.

Finally, we do hope that readers will find the chapters of *Mycotoxigenic Fungi: Methods and Protocols* helpful and informative for their own work, and we deeply thank all authors for their enthusiastic and effective work that made the preparation of this book possible.

Bari, Italy

Antonio Moretti

Antonia Susca
Contents

Preface .. v
Contributors .. ix

**PART I Fungal Genera and Species of Major Significance
and Their Associated Mycotoxins**

1. Mycotoxins: An Underhand Food Problem 3
 Antonio Moretti, Antonio F. Logrieco, and Antonia Susca

2. *Alternaria* Species and Their Associated Mycotoxins 13
 Virginia Elena Fernández Pinto and Andrea Patriarca

3. *Aspergillus* Species and Their Associated Mycotoxins 33
 Giancarlo Perrone and Antonia Gallo

4. *Fusarium* Species and Their Associated Mycotoxins 51
 Gary P. Munkvold

5. *Penicillium* Species and Their Associated Mycotoxins 107
 Giancarlo Perrone and Antonia Susca

**PART II Polymerase Chain Reaction (PCR)-Based Methods
for Detection and Identification of Mycotoxigenic Fungi**

6. Targeting Conserved Genes in *Alternaria* Species 123
 *Miguel Ángel Pavón, Inés María López-Calleja, Isabel González,
 Rosario Martín, and Teresa García*

7. Targeting Conserved Genes in *Aspergillus* Species 131
 Sándor Kocsubé and János Varga

8. Targeting Conserved Genes in *Fusarium* Species 141
 *Jéssica Gil-Serna, Belén Patiño, Miguel Jurado, Salvador Mirete,
 Covadonga Vázquez, and M. Teresa González-Jaén*

9. Targeting Conserved Genes in *Penicillium* Species 149
 Stephen W. Peterson

10. Targeting Aflatoxin Biosynthetic Genes 159
 Ali Y. Srour, Ahmad M. Fakhoury, and Robert L. Brown

11. Targeting Trichothecene Biosynthetic Genes 173
 *Songbong Wei, Theo van der Lee, Els Verstappen, Marga van Gent,
 and Cees Waalwijk*

12. Targeting Ochratoxin Biosynthetic Genes 191
 Antonia Gallo and Giancarlo Perrone

13. Targeting Fumonisin Biosynthetic Genes 201
 Robert H. Proctor and Martha M. Vaughan
14 Targeting Other Mycotoxin Biosynthetic Genes ... 215
 Maria J. Andrade, Mar Rodríguez, Juan J. Córdoba, and Alicia Rodríguez

15 Evaluating Aflatoxin Gene Expression in Aspergillus Section Flavi 237
 Paula Cristina Azevedo Rodrigues, Jessica Gil-Serna, and M. Teresa González-Jaén

16 Evaluating Fumonisin Gene Expression in Fusarium verticillioides 249
 Valeria Scala, Ivan Visentin, and Francesca Cardinale

Part III Polymerase Chain Reaction (PCR)-Based Methods
 for Multiplex Detection of Mycotoxigenic Fungi

17 Multiplex Detection of Aspergillus Species ... 261
 Pedro Martínez-Culebras, María Victoria Selma, and Rosa Aznar

18 Multiplex Detection of Fusarium Species .. 269
 Tapani Yli-Mattila, Siddaiah Chandra Nayaka, Mudili Venkataramana, and Emre Yörük

19 Multiplex Detection of Toxigenic Penicillium Species 293
 Alicia Rodríguez, Juan J. Córdoba, Mar Rodríguez, and María J. Andrade

Part IV Combined PCR and Other Molecular Approaches
 for Detection and Identification of Mycotoxigenic Fungi

20 PCR-RFLP for Aspergillus Species .. 313
 Ali Atoui and André El Khoury

21 PCR ITS-RFLP for Penicillium Species and Other Genera 321
 Sandrine Rousseaux and Michèle Guilloux-Bénatier

Part V New Methodologies for Detection and Identification
 of Mycotoxigenic Fungi

22 Identification of Ochratoxin A-Producing Black Aspergilli from Grapes
 Using Loop-Mediated Isothermal Amplification (LAMP) Assays 337
 Michelangelo Storari and Giovanni A.L. BrogGINI

23 Detection of Transcriptionally Active Mycotoxin Gene Clusters:
 DNA Microarray .. 345
 Tamás Emri, Anna Zalka, and István Pócsi

24 Mycotoxins: A Fungal Genomics Perspective .. 367
 Daren W. Brown and Scott E. Baker

Index ... 381
Contributors

M ARÍA J. ANDRADE • Faculty of Veterinary Science, Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Cáceres, Spain
ALI ATOUI • Lebanese Atomic Energy Commission-CNRS, Riad El Solh, Beirut, Lebanon; Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, Beirut, Lebanon
ROSA AZNAR • Department of Biotechnology, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Spain; Department of Microbiology and Ecology and Spanish Type Culture Collection (CECT), University of Valencia, Valencia, Spain
SCOTT E. BAKER • US Department of Energy, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
GIOVANNI A.L. BROGGINI • Institute for Plant Production Sciences, Agroscope, Wädenswil, Switzerland
DAREN W. BROWN • Mycotoxin Prevention and Applied Microbiology Research, US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research (USDA–ARS–NCAUR), Peoria, IL, USA
ROBERT L. BROWN • Southern Regional Research Center, SDA-ARS New Orleans, LA, USA
FRANCESCA CARDINALE • Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
JUAN J. CORDOBA • Faculty of Veterinary Science, Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Cáceres, Spain
ANDRÉ EL KHOURY • Centre D’Analyses Et De Recherches, Faculté des Sciences, Université Saint-Joseph, Beyrouth, Lebanon
TAMÁS EMRI • Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
AHMAD M. FAKHOURY • Department of Plant Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, USA
ANTONIA GALLO • Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
TERESA GARCÍA • Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
MARGA VAN GENT • Biointeractions and Plant Health, Wageningen UR, Wageningen, The Netherlands
JESSICA GIL-SERNA • Facultad de Ciencias Biologicas, Departamento de Microbiologia, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
ISABEL GONZÁLEZ • Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
M. TERESA GONZÁLEZ-JAÉN • Facultad de Ciencias Biologicas, Departamento de Genetica, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
MICHELE GUILLOUX-BÉNATIER • Institut Universitaire de la Vigne et du Vin “Jules Guyot”, Université de Bourgogne, Dijon Cedex, France
Miguel Jurado • Facultad de Ciencias Biológicas, Departamento de Genética, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
Sándor Kocsúb • Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
Theo van der Lee • Biointeractions and Plant Health, Wageningen UR, Wageningen, The Netherlands
Antonio F. Logrieco • Institute of Sciences of Food Production, National Research Council, Bari, Italy
Inés María López-Calleja • Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
Rosario Martín • Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
Pedro Martínez-Culebras • Department of Preventive Medicine, Public Health, Food Science and Technology, Bromatology, Toxicology, and Legal Medicine, University of Valencia, Valencia, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
Salvador Mirete • Facultad de Ciencias Biológicas, Departamento de Genética, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
Antonio Moretti • Institute of Sciences of Food Production, National Research Council, Bari, Italy
Gary P. Munkvold • Department of Plant Pathology and Microbiology, Seed Science Center, Iowa State University, Ames, IA, USA
Sidduiah Chandra Nayaka • DOS in Biotechnology, University of Mysore, Manasagangotri, Mysuru, India
Belén Patiño • Facultad de Ciencias Biológicas, Departamento de Microbiología, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
Andrea Patrìarca • Laboratorio de Microbiología de Alimentos, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Miguel Ángel Pavón • Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
Giancarlo Perrone • Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
Stephen W. Peterson • Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL, USA
Virginia Elena Fernández Pinto • Laboratorio de Microbiología de Alimentos, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
István Póczi • Faculty of Science and Technology, Department of Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
Robert H. Proctor • USDA ARS NCAUR, Peoria, IL, USA; United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, USA
Paula Cristina Azevedo Rodrigues • CIMO/School of Agriculture, The Polytechnic Institute of Bragança, Bragança, Portugal
ALICIA RODRÍGUEZ • Faculty of Veterinary Science, Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Cáceres, Spain
MAR RODRÍGUEZ • Faculty of Veterinary Science, Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Cáceres, Spain
SANDRINE ROUSSEAUX • Institut Universitaire de la Vigne et du Vin “Jules Guyot”, Université de Bourgogne, Dijon, France
VALERIA SCALA • Department of Environmental Biology, University of Rome “Sapienza”, Rome, Italy
MARÍA VICTORIA SELMA • Research Group on Quality Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
ALI Y. SOUR • Department of Plant Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, USA
MICHELANGelo STORARI • Institute for Food Sciences, Agroscope, Bern, Switzerland
ANTONIA SUSCA • Institute of Sciences of Food Production, National Research Council, Bari, Italy
JANOS VARGA • Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
MARThA M. VAUGHAN • United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, USA
COVADONGA VÁZQUEZ • Facultad de Ciencias Biológicas, Departamento de Microbiología, Universidad Complutense de Madrid, Jose Antonio Novais, Madrid, Spain
MUDILI VENKATARAMANA • Microbiology Division, DRDO-BU-Centre for Life sciences, Bharathiar University Campus, Coimbatore, Tamil Nadu, India
ELS VERSTAPPEN • Biointeractions and Plant Health, Wageningen UR, Wageningen, The Netherlands
IVAN VISENTIN • Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
CEES WAAWIJK • Biointeractions and Plant Health, Wageningen UR, Wageningen, The Netherlands
SONGHong WEI • College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
TAPAN YI-MATTILA • Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
EMRE YORUK • Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
ANNA ZALKA • Kromat Ltd., Budapest, Hungary