Cancer Drug Resistance

Overviews and Methods

Edited by

José Rueff

Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology,
NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

António Sebastião Rodrigues

Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology,
NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
Preface

The last few decades have been witness to a far-reaching transformation in the biomedical sciences in which genetics has been one amongst the main actors. Indeed, genetics casts a new light on our understanding of genes and their action, with genomic sciences enabling the rapid acquisition of knowledge of whole genome sequences, polymorphisms, and epigenomics’ mechanisms of regulation of gene expression, leading to the current era of the “omics” with all its component members: the genome, the transcriptome, the proteome, the metabolome, or the variome. Other terms could enter this lexicon reflecting the increased ability of a more accurate diagnosis and characterization of the neoplastic cell types, but not still necessarily a cure.

The present impact of the major noncommunicable diseases is startling, inasmuch as it shows a strong tendency to rise and tends to increase proportionally in low-income countries. Cancer as well as other major non-communicable diseases displays an unbridled growth both in incidence and in mortality. The global burden of cancer continues to increase largely because of the aging and the growth of the world population [1] alongside a failure of cancer therapy associated with acquired and intrinsic resistance mechanisms. Indeed, of the 7.6 million cancer deaths that occur every year worldwide, [2] many are due to cancer drug resistance.

This problem is not negligible since the number of new cases is projected to rise from the 13.3 million new cases of cancer in 2010 to 21.5 million in 2030 [3]. In the European Region alone, cancer is the most important cause of death and morbidity after cardiovascular diseases, with more than three million new cases and 1.7 million deaths each year. Overall, more than 70 % of all cancer deaths occur in low-income and middle-income regions with little or no resources for the prevention, diagnosis, and treatment of cancer. The proportion of cases diagnosed in less developed countries is projected to meagerly increase from about 56 % in 2008 to a little more than 60 % in 2030 [4]. Cancer is inextricably linked with economic wealth.

Cancer care costs are a financial burden to patients, their families, and society as a whole. The importance of the effectiveness of new drugs is also illustrated by financial figures, and the global pharmaceutical market with their approximately 30 % profit margins epitomizes the costs involved in the search for new effective drugs due to acquired and intrinsic resistance mechanisms. And those costs are growing.

Although stemming from a single account of evidence and to make a long story short, the importance of developing new cancer drugs when older ones become less effective may be well illustrated by remembering imatinib and nilotinib, both functioning as competitive inhibitors at the ATP-binding site of BCR-ABL of chronic myelogenous leukemia (CML). Although imatinib is a first-line treatment for CML and might also be of interest, for instance, for glioblastoma multiform, having generated sales of more than US$2.5 billion worldwide in 2006, its less favorable therapeutic results in CML led, in a few years, to the development of the second-generation drug nilotinib which showed a relatively more favorable safety profile and is active in imatinib-resistant CML [5]. In 2012 nilotinib generated US$998 million and a 44 % growth gaining market segment share as a potent second-generation
targeted therapy for chronic myeloid leukemia (CML). Although it is a truism that cancer treatment is inextricably linked to economical factors, we live in a time to invest boldly in new ways of understanding and predicting new cancer drugs’ effects and their potential to induce resistance. The new era of the “omics” is poised to face the problem, and the current book was a timely initiative of Springer, Humana Press, which intends to review and update the available knowledge and mechanisms on cancer drug resistance.

Cellular resistance to drugs can develop from a variety of mechanisms which are intended to be dealt in this book, not necessarily thoroughly, which would be an impossible task.

Resistance to a particular drug, or a class of drugs with similar mechanisms of action (multi-drug resistance [MDR]), might arise from an alteration in the drug’s cellular target (e.g., a mutation in the target molecule) or by an increase in the repair of drug-induced DNA damage, or a rapid metabolic biotransformation of the drug rendering it ineffective. In the last few years, the importance of DNA repair pathways in resistance to chemotherapy has been increasingly recognized, yet translation to the clinic is residual. Since many classical cancer therapies target DNA, the influence of DNA repair systems in response to DNA damage from chemotherapy and radiotherapy is critical to cell survival. The use of inhibitors of DNA repair or DNA damage signaling pathways (NER, BER, MMR, HR, and NHEJ) provides an interesting opportunity to target the genetic differences that exist between normal and tumor tissue. On the other hand, the study of genes involved in the metabolism of drugs and xenobiotics, in particular CYPs, CYPOR, and Cytb5 which may mediate the effectiveness of drugs and also drug resistance, is central to the development of next-generation therapies.

However, the most common mechanism of resistance to cancer drugs may rely on the efflux of drugs from the cell by one or more adenosine 5′-triphosphate (ATP)–binding cassette (ABC) transporters. In healthy cells, ABC transporter proteins display a variety of roles in several organs, i.e., the liver, kidneys, gastrointestinal tract, or the nervous and reproductive systems, increasing the excretion of toxins from the body. In cancer cells, the ABC transporters work to eject chemotherapeutics from the cell to nontoxic concentrations, thus decreasing their therapeutic effects. Of the more than 48 membrane proteins that comprise the ABC transporters family, at least 15 have been associated with drug resistance. Although much progress has been made to elucidate the molecular mechanism of these resistance-conferring ABC transporters, this knowledge is not sadly at a routine stage of translational to clinical relevance. It thus seems paramount to search for an integrative view of membrane transporters as mediators of the entry, distribution, and excretion of medicines and genotoxic xenobiotics in the human organism, namely the superfamilies of membrane transporters ABC and SLC (and there are some 55 families in the human SLC gene superfamily) and their involvement in the membrane traffic of cancer drugs. Also, as elusive as it might still be if the Warburg effect is causal or is an effect in tumorigenesis, the fact is that cancer cells are avid for glucose and thus the two different types of membrane carrier proteins, the Na+-coupled glucose transporters (SLC5A/SGLT2) and the glucose transporter facilitators (SLC2A/GLUT1), are paramount to glucose inflow and have been shown to be upregulated in some cancers. Besides their role as main players in PET scan diagnostic procedures, they may constitute potential targets for new drugs blocking the entrance of glucose in cancer cells inasmuch as those drugs may exhibit cancer cell tropism.

Moreover, genome-wide association studies (GWAS) have been extremely successful in identifying regions of the genome that are linked to a specific trait and could also be applied in detecting the most probable marker/gene responsible for a certain resistance to a drug or patient’s germ line genetic variation that may also affect drug response. Furthermore,
NGS-based approaches as applied to the exome of cancer cells may open new ways to the early identification of mutated genes whose protein products are targets to new drugs.

The study of the variome of repair genes and the levels and allocation of epigenetic regulators, in particular noncoding RNAs (e.g., microRNAs) and methylation patterns, as well as the DNA lesions and the regulation of gene expression, all have a central interest in the etiology of cancer. These aspects will contribute to the increase in the effectiveness and safety of new drugs and their therapeutic use and thus will certainly be among the major players in the future treatment of cancer.

Not more important than all the above-mentioned aspects, but still overriding, is the use of methods like proteomics which are essential in evaluating protein markers that can guide us in the search for the genomic variants or mutations responsible for cancer drug resistance.

Finally, the development of databases and in silico methodologies and their use in helping to de-emphasize individual medical hunches by supplying the criteria of evidence-based medicine will surely improve the rationale of the use of new cancer drugs and their potential resistance as well as play an interesting trade-off of individual medical ethics against the social ethics (and biopolitics) of the efficient use of scarce health resources.

Had it not been for the kind invitation of Professor John M. Walker, Professor Emeritus, School of Life and Medical Sciences, University of Hertfordshire, we would never have had the boldness of entangling ourselves in the task of organizing a book on resistance to cancer drugs. Also without the prompt and supremely competent contribution of all the prestigious authors of the various chapters who kindly accepted our invitation, the book would never be here. Our gratitude is proffered to all of them.

Lisbon, Portugal
José Rueff
Lisbon, Portugal
António Sebastião Rodrigues

References

Contents

Preface ... v
Contributors ... xi

1 Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint .. 1
José Rueff and António Sebastião Rodrigues

2 Classical and Targeted Anticancer Drugs: An Appraisal of Mechanisms of Multidrug Resistance 19
Bruce C. Baguley

3 In Vitro Methods for Studying the Mechanisms of Resistance to DNA-Damaging Therapeutic Drugs 39
Pasarat Khongkow, Anna W. Middleton, Jocelyn P.-M. Wong, Navrohit K. Kandola, Mesayamas Kongsema, Gabriela Nestal de Moraes, Ana R. Gomes, and Eric W.-F. Lam

4 In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin .. 55
Romi Ghose, Pankajini Mallick, Guncha Taneja, Chun Chu, and Bhagavatula Moorthy

5 Uptake and Permeability Studies to Delineate the Role of Efflux Transporters 69
Ramya Krishna Vadlapatla, Dhananjay Pal, and Ashim K. Mitra

6 Dynamics of Expression of Drug Transporters: Methods for Appraisal .. 75
Marta Gromicho, José Rueff, and António Sebastião Rodrigues

7 Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter .. 87
Ana Armada, Célia Martins, Gabriella Spengler, Joseph Molnar, Leonard Amaral, António Sebastião Rodrigues, and Miguel Viveiros

8 Resistance to Targeted Therapies in Breast Cancer ... 105
Sofia Braga

9 MicroRNAs and Cancer Drug Resistance ... 137
Bruno Costa Gomes, José Rueff, and António Sebastião Rodrigues

10 The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis .. 163
Ingrid Garajová, Tessa Y.S. Le Large, Elisa Giovannetti, Geert Kazemier, Guido Biasco, and Godefridus J. Peters

ix
11 Methods for Studying MicroRNA Expression and Their Targets in Formalin-Fixed, Paraffin-Embedded (FFPE) Breast Cancer Tissues ... 189
Bruno Costa Gomes, Bruno Santos, José Rueff, and António Sebastião Rodrigues

12 The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance .. 207
Marjan E. Askarian-Amiri, Euphemia Leung, Graeme Finlay, and Bruce C. Baguley

13 Cancer Exosomes as Mediators of Drug Resistance 229
Maria do Rosário André, Ana Pedro, and David Lyden

14 Isolation and Characterization of Cancer Stem Cells from Primary Head and Neck Squamous Cell Carcinoma Tumors 241
Hong S. Kim, Alexander T. Pearson, and Jacques E. Nör

15 Clinical and Molecular Methods in Drug Development: Neoadjuvant Systemic Therapy in Breast Cancer as a Model 251
Sofía Braga

16 Proteomics in the Assessment of the Therapeutic Response of Antineoplastic Drugs: Strategies and Practical Applications 281
Vukosava Milic Torres, Lazar Popovic, Fátima Vaz, and Deborah Penque

17 Managing Drug Resistance in Cancer: Role of Cancer Informatics 299
Ankur Gautam, Kumardeep Chaudhary, Rahul Kumar, Sudheer Gupta, Harinder Singh, and Gajendra P.S. Raghava

Erratum to ... E1

Index .. 313
Contributors

LEONARD AMARAL • Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Unidade de Medicina das Viagens, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal

MÁRIA DO ROSÁRIO ANDRÉ • Champalimaud Foundation, Lisbon, Portugal; Department of Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Nova University, Lisbon, Portugal

ANA ARMADA • Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Nova University, Lisbon, Portugal

MARJAN E. ASKARIAN-AMIRI • Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

BRUCE C. BAGULEY • Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

GUIDO BIASCO • Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy

SOFIA BRAGA • José de Mello Saúde, Lisbon, Portugal; Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Algarve, Portugal

KUMARDEEP CHAUDHARY • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

CHUN CHU • Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

GABRIELA NESTAL DE MORAES • Department of Surgery and Cancer, Imperial College London, London, UK

GRAEME FINLAY • Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

INGRID GARAJOVA • Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy

ANKUR GAUTAM • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

ROMI GHOSE • Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA

ELISA GIOVANNETTI • Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Starr-Up Unit, University of Pisa, Pisa, Italy

BRUNO COSTA GOMES • Centre for Toxigenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
ANA R. GOMES • Department of Surgery and Cancer, Imperial College London, London, UK

MARTA GROMICHO • Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

SUDHEER GUPTA • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

NAVRoHT K. KANDOLA • Department of Surgery and Cancer, Imperial College London, London, UK

GEERT KAZEMIER • Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands

PASARAT KHONGKOW • Department of Surgery and Cancer, Imperial College London, London, UK

HONG S. KIM • Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA

MESAYAMAS KONGSEMA • Department of Surgery and Cancer, Imperial College London, London, UK

RAHUL KUMAR • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

ERIC W.-F. LAM • Department of Surgery and Cancer, Imperial College London, London, UK

TESSA Y.S. LE LARGE • Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands

EUPHEMIA LEUNG • Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

DAVID LYDEN • Champalimaud Foundation, Lisbon, Portugal; Department of Genetics, Oncology and Human Toxicology, Nova Medical School/Faculty of Medical Sciences, Nova University, Lisbon, Portugal

PANKAJINI MALICK • Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA

CÉLIA MARTINS • Centre for Toxicogenomics and Human Health Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

ANNA W. MIDDLETON • Department of Surgery and Cancer, Imperial College London, London, UK

ASHIM K. MITRA • Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA

JOSEPH MOLNAR • Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary

BHAGAVATULA MOORTHY • Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA

JACQUES E. NOR • Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan
College of Engineering, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA

Dhananjay Pal • Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA

Alexander T. Pearson • Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA

Ana Pedro • Champalimaud Foundation, Lisbon, Portugal; Department of Genetics, Oncology and Human Toxicology, Nova Medical School/Faculty of Medical Sciences, Nova University, Lisbon, Portugal

Deborah Penque • Laboratório de Proteómica, Human Genetics Department, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal; ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Portugal

Godefridus J. Peters • Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands

Lazar Popovic • Medical Oncology Department, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia; Medical Faculty, University of Novi Sad, Novi Sad, Serbia

Gajendra P.S. Raghava • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

António Sebastião Rodrigues • Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

José Rueff • Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

Bruno Santos • Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal

Harinder Singh • Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India

Gabriella Spengler • Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary

Guncha Taneja • Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA

Vukosava Milic Torres • Laboratory of Proteomics, Human Genetics Department, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal; ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Portugal

Ramya Krishna Vadlapatla • Technical Services, Mylan Pharmaceuticals Inc., Morgantown, WV, USA

Fátima Vaz • Laboratório de Proteómica, Human Genetics Department, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal; ToxOmics-Centre of Toxicogenomics and Human Health, Universidade Nova de Lisboa, Portugal

Miguel Viveiros • Grupo de Micobactérias, Unidade de Ensino e Investigação de Microbiologia Médica e Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal

Jocelyn P.-M. Wong • Department of Surgery and Cancer, Imperial College London, London, UK