Gene Therapy for Neurological Disorders

Methods and Protocols

Edited by

Fredric P. Manfredsson

Translational Science and Molecular Medicine, Michigan State University,
College of Human Science, Grand Rapids, Michigan, USA

Humana Press
Preface

Gene therapy of the nervous system, a technique once utilized by a few select laboratories, is now a commonplace research tool used around the world. Not only is gene therapy a useful utility in treating and creating preclinical models, but this technology has also demonstrated success in the clinic, in terms of both safety and efficacy [1, 2].

Gene therapy is a valuable tool that is being increasingly utilized to model neurodegenerative disorders [3]. One reason for this is the inherent ability of gene therapy to control genetic expression in both a spatial and temporal manner. For example, using this precision of gene therapy to model neurodegenerative disorders enables researchers to overcome any developmental compensations that may occur with germline manipulations [4, 5], to create lesions that are restricted to one hemisphere or specific circuits, and to easily titrate the genetic material of interest [6], among other benefits. Of course, these benefits of gene therapy also translate to the use of gene therapy for the delivery of therapeutic genes in preclinical models of neurological disorders [7–11]. That being said, after over 15 years of experience in gene therapy, it has become clear to me that a significant amount of crucial knowledge necessary to design and execute a successful gene therapy experiment often fails to be disseminated in a normal format (i.e., via scientific manuscripts). Rather, this esoteric, yet essential knowledge is either briefly mentioned or solely propagated via word of mouth. Therefore, it is all too common that studies involving gene therapy manipulations produce results that vary between investigators (e.g., Ref. 12). Although such discrepancies are not the result of any wrongdoing, their occurrence adds to the “mysticism” sometimes associated with gene therapy and could serve to reduce the enthusiasm for taking on similar projects in the future. Thus, one purpose of this book is to dispel any confusion and provide a clear and detailed road map of how to successfully design and execute a gene therapy experiment in order to obtain consistent results.

As science progresses and new discoveries are made, the boundaries of gene therapy are rapidly expanding: Gene therapy vehicles are continuously undergoing development and are becoming more readily available, delivery methods are continuously being developed, and transgene cassettes are becoming more and more refined. This leaves the researcher with a plethora of decisions that must be considered before undertaking a gene therapy experiment. In this volume I have invited experts from around the world to share their expertise in finite areas of neurological gene therapy. The compilation of protocols and instructive chapters in this book are intended to give researchers, clinicians, and students of all levels a foundation upon which future gene therapy experiments can be designed. When one designs experiments involving gene therapy of the nervous system, several aspects need to be considered before experiments are designed: What delivery vehicle do you use? Will you produce this vector? How will you ensure that your vector retains stability? What expression system best fits your needs? What route will you choose to deliver your gene therapy agent? How will you model the neurodegenerative disorder that you aim to investigate, and what are the proven methods to treat these disorders in preclinical models? This book is aimed to address all these important considerations as well as to disseminate the
aforementioned bits of arcane information that are very important to consider during the course of experimentation.

Finally, the penultimate goal for many gene therapists is to see their product eventually end up in the clinic as a treatment for neurological disorders. Although gene therapy has progressed to the clinic, this is not a straightforward path as several variables such as age and disease status have to be considered. Several chapters in this volume will also discuss special considerations that need to be addressed when translating experimental approaches to the clinic.

Grand Rapids, MI, USA
Fredric P. Manfredsson
Contents

Preface .. v
Contributors ... xi

PART I INTRODUCTION

1 Introduction to Viral Vectors and Other Delivery Methods for Gene Therapy of the Nervous System ... 3
Fredric P. Manfredsson

PART II EXPRESSION CASSETTES

2 Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors ... 21
Matthew L. Hirsch, Sonya J. Wolf, and R.J. Samulski

3 Expression of Multiple Functional RNAs or Proteins from One Viral Vector ... 41
Tomas Björklund

4 Regulated Gene Therapy .. 57
Ludivine Breger, Erika Elgstrand Wettergren, Luis Quintino, and Cecilia Lundberg

5 Design of shRNA and miRNA for Delivery to the CNS 67
Gabriela Toro Cabrera and Christian Mueller

6 Tissue-Specific Promoters in the CNS 81
Sebastian Kügler

PART III VIRAL VECTOR PRODUCTION

7 Small-Scale Recombinant Adeno-Associated Virus Purification 95
Corinna Burger and Kevin R. Nash

8 Lentivirus Production and Purification 107
Matthew J. Benskey and Fredric P. Manfredsson

9 Viral Vector Production: Adenovirus 115
Julius W. Kim, Ramin A. Morshed, J. Robert Kane, Brenda Auffinger, Jian Qiao, and Maciej S. Lesniak

PART IV VIRAL VECTOR TROPISM

10 Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids ... 133
Michael J. Castle, Heikki T. Turunen, Luk H. Vandenberghe, and John H. Wolfe
Contents

11 Altering Tropism of rAAV by Directed Evolution 151
 Damien Marsic and Sergei Zolotukhin

12 Altering Entry Site Preference of Lentiviral Vectors
 into Neuronal Cells by Pseudotyping with Envelope Glycoproteins 175
 Kenta Kobayashi, Shigeki Kato, Ken-ichi Inoue, Masahiko Takada,
 and Kazuto Kobayashi

13 Directed Evolution of Adenoviruses .. 187
 Jason G. Smith

PART V DELIVERY METHODS

14 Intraparenchymal Stereotaxic Delivery of rAAV and Special
 Considerations in Vector Handling ... 199
 Matthew J. Benskey and Fredric P. Manfredsson

15 MRI-Guided Delivery of Viral Vectors 217
 Ernesto A. Salegio, John Bringas, and Krystof S. Bankiewicz

16 Systemic Gene Therapy for Targeting the CNS 231
 Sara E. Gombash and Kevin D. Foust

17 Widespread Neuronal Transduction of the Rodent CNS
 via Neonatal Viral Injection .. 239
 Ji-Yoen Kim, Stacy D. Grunke, and Joanna L. Jankowsky

18 AAV-Mediated Gene Transfer to Dorsal Root Ganglion 251
 Hongwei Yu, Gregory Fischer, and Quinn H. Hogan

19 Gene Therapy of the Peripheral Nervous System:
 The Enteric Nervous System .. 263
 Matthew J. Benskey and Fredric P. Manfredsson

20 Gene Therapy of the Peripheral Nervous System: Celiac Ganglia 275
 Bradley Hammond and David L. Kreulen

21 Convection Enhanced Delivery of Recombinant Adeno-associated
 Virus into the Mouse Brain .. 285
 Kevin R. Nash and Marcia N. Gordon

22 Nonviral Gene Therapy of the Nervous System: Electroporation 297
 Xue-Feng Ding and Ming Fan

23 Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy
 of the Central Nervous System (CNS): Chemical-Based Transfection 307
 James G. Hecker

24 Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells
 to Deliver Growth Factors in the Skeletal Muscle of a Familial
 ALS Rat Model .. 325
 Masatoshi Suzuki and Clive N. Svendsen
PART VI GENE THERAPY BASED MODELING OF NEURODEGENERATIVE DISORDERS

25 Gene Therapy Models of Alzheimer’s Disease and Other Dementias 339
Benjamin Combs, Andrew Kneynsberg, and Nicholas M. Kanaan

26 Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson’s Disease ... 367
D. Luke Fischer, Sara E. Gombash, Christopher J. Kemp, Fredric P. Manfredson, Nicole K. Polinski, Megan F. Duffy, and Caryl E. Sortwell

27 Gene Therapy-Based Modeling of Neurodegenerative Disorders: Huntington’s Disease ... 383
Deborah Young

PART VII GENE THERAPY FOR THE TREATMENT OF NEUROLOGICAL DISORDERS

28 Gene Therapy for the Treatment of Neurological Disorders: Amyotrophic Lateral Sclerosis .. 399
Zachary T. McEachin, Anthony Donsante, and Nicholas Boulis

29 Stereotaxic Surgical Targeting of the Nonhuman Primate Caudate and Putamen: Gene Therapy for Huntington’s Disease 409
Jodi L. McBride and Randall L. Clark

30 Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders ... 429
Dominic J. Gessler and Guangping Gao

31 Gene Therapy for the Treatment of Neurological Disorders: Central Nervous System Neoplasms ... 467
Neha Kamran, Marianela Candolfi, Gregory J. Baker, Mariela Moreno Ayala, Marta Dzaman, Pedro R. Lowenstein, and Maria G. Castro

PART VIII CLINICAL TRIALS

32 AAV2-Neurturin for Parkinson’s Disease: What Lessons Have We Learned? ... 485
Jeffrey H. Kordower

Index ... 491
Contributors

BRENDA AUFFINGER • The University of Chicago Medicine, Chicago, IL, USA
MARIELA MORENO AYALA • Instituto de Investigaciones Biomédicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
GREGORY J. BAKER • Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
KRISTOF S. BANKIEWICZ • Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
MATTHEW J. BENSKEY • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
TOMAS BJÖRLUND • Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
NICHOLAS BOULIS • Department of Neurosurgery, Emory University, Atlanta, GA, USA
LUDIVINE BREGER • Department of Experimental Medical Sciences, CNS Gene Therapy Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
JOHN BRINGAS • Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
CORINNA BURGER • Department of Neurology, Medical Sciences Center, University of Wisconsin-Madison, Madison, WI, USA
MARIANELA CANDOLFI • Instituto de Investigaciones Biomédicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
MICHAEL J. CASTLE • Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurosciences, University of California-San Diego, La Jolla, CA, USA
MARIA G. CASTRO • Department of Neurology, The University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
RANDALL L. CLARK • Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
BENJAMIN COMBS • Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
XUE-FENG DING • Beijing Institute of Basic Medical Sciences, Beijing, China
ANTHONY DONSANTE • Department of Neurosurgery, Emory University, Atlanta, GA, USA
MEGAN F. DUFFY • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
MARTA DŻAMAN • Department of Neurology, The University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
MING FAN • Beijing Institute of Basic Medical Sciences, Beijing, China
GREGORY FISCHER • Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
D. LUKE FISCHER • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; MD/PhD Program, Michigan State University, Grand Rapids, MI, USA; Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
KEVIN D. FOUST • Department of Neuroscience, Ohio State University, Columbus, OH, USA
GUANGPING GAO • University of Massachusetts Medical School, Worcester, MA, USA
DOMINIC J. GESSLER • University of Massachusetts Medical School, Worcester, MA, USA
SARA E. GOMBASH • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
MARCIA N. GORDON • Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, Tampa, FL, USA
STACY D. GRUNKE • Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
BRADLEY HAMMOND • Michigan State University, East Lansing, MI, USA
JAMES G. HECKER • Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington School of Medicine, Seattle, WA, USA
MATTHEW L. HIRSCH • Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
QUINN H. HOGAN • Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
KEN-ICHI INOUE • Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
JOANNA L. JANKOWSKY • Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
NEHA KAMAN • Department of Neurosurgery, The University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
NICHOLAS M. KANAAN • Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, Grand Rapids, MI, USA
J. ROBERT KANE • The University of Chicago Medicine, Chicago, IL, USA
SHIGEKI KATO • Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
CHRISTOPHER J. KEMP • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
JULIUS W. KIM • The University of Chicago Medicine, Chicago, IL, USA
JI-YOEN KIM • Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
ANDREW KNEYNSBERG • Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, Grand Rapids, MI, USA
Kenta Kobayashi • Section of Viral Vector Development, National Institute of Physiological Sciences, Okazaki, Japan
Kazuto Kobayashi • Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
Jeffrey H. Kordower • Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
David L. Kreulen • Department of Physiology, Michigan State University, East Lansing, MI, USA
Sebastian Kügler • Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), University Medicine Göttingen, Göttingen, Germany
Maciej S. Lesniak • The University of Chicago Medicine, Chicago, IL, USA
Pedro R. Lowenstein • Department of Neurology, The University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
Cecilia Lundberg • Department of Experimental Medical Sciences, CNS Gene Therapy Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
Fredric P. Manfredsson • Translational Science and Molecular Medicine, Michigan State University, College of Human Science, Grand Rapids, MI, USA
Damien Marsic • Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
Jodi L. McBride • Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA
Zachary T. McEachin • Department of Neurosurgery, Emory University, Atlanta, GA, USA
Ramin A. Morshed • The University of Chicago Medicine, Chicago, IL, USA
Christian Mueller • UMASS Medical School, Neurology & Gene Therapy Center, Worcester, MA, USA
Kevin R. Nash • Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, Tampa, FL, USA
Nicole K. Polinski • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
Jian Qiao • The University of Chicago Medicine, Chicago, IL, USA
Luis Quintino • Department of Experimental Medical Sciences, CNS Gene Therapy Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
Ernesto A. Salegio • Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Laboratory for CNS Repair, Brain and Spinal Cord Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
R.J. Samulski • Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
Jason G. Smith • Department of Microbiology, University of Washington, Seattle, WA, USA
Caryl E. Sortwell • Department of Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
Contributors

MASATOSHI SUZUKI • Department of Comparative Biosciences, The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, USA

CLIVE N. SVENDSEN • Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

MASAHIKO TAKADA • Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan

GABRIELA TORO CABRERA • UMASS Medical School, Neurology & Gene Therapy Center, Worcester, MA, USA

HEIKKI T. TURUNEN • Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, USA

LUK H. VANDENBERGHE • Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, USA

ERIKA ELGSTRAND WETTERGREN • Department of Experimental Medical Sciences, CNS Gene Therapy Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden

JOHN H. WOLFE • Research Institute of the Children’s Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA

SONYA J. WOLF • Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA

DEBORAH YOUNG • Department of Pharmacology & Clinical Pharmacology, Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand

HONGWEI YU • Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA

SERGEI ZOLOTUKHIN • Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA