Galectins

Methods and Protocols

Edited by

Sean R. Stowell

Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine
Emory University School of Medicine, Atlanta, GA, USA

Richard D. Cummings

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA

Humana Press
Although the discovery of galectins over 30 years ago stemmed from interest in understanding the roles of carbohydrates in fundamental biological processes, this finding ultimately uncovered an entire family of potent regulatory proteins. Given their nearly ubiquitous expression and ability to bind highly modifiable carbohydrate ligands, in addition to a variety of other regulatory proteins, these glycan-binding proteins (GBPs) possess the capacity to regulate a wide variety of biological processes. As a result, galectins may not only be some of the most ancient GBPs known but, given their history throughout evolution, also appear to have been a unique evolutionary substrate in many different biological processes. Consistent with this, the galectin family likely represents one of the most pleiotropic families described, with individual members having been implicated in various aspects of nearly every biological process, from RNA splicing to complex regulatory circuits that orchestrate adaptive immunity. Given the diverse roles of galectins in a variety of biological systems, studying these GBPs often requires the assimilation of diverse technical skills to fully appreciate their biological function. Furthermore, as perhaps the most unique and defining feature of galectins lies in their ability to regulate cell behavior through the recognition of carbohydrates, examination of galectin behavior often requires the utilization of carbohydrate biochemistry techniques that may not be familiar to individuals just entering the field. In this volume, individual chapters are dedicated to examining salient features of galectin functions. Each chapter has been written by the world’s experts in the field and features clear protocols with notes that provide important considerations that will help you avoid common pitfalls when examining galectin biology. As the first volume solely dedicated to methodological approaches designed to study galectin function, we hope that this work will provide a useful framework when examining galectin function for many years to come.

Atlanta, GA

Sean R. Stowell
Richard D. Cummings
Contents

Preface ... v
Contributors ... xi

1 Evolving Mechanistic Insights into Galectin Functions 1
Connie M. Arthur, Marcelo Dias Baruffi, Richard D. Cummings, and Sean R. Stowell

2 Cloning, Expression, and Purification of Galectins for In Vitro Studies 37
Paul A. Poland, Carol L. Kinlough, and Rebecca P. Hughey

3 Alkylation of Galectin-1 with Iodoacetamide and Mass Spectrometric
Mapping of the Sites of Incorporation 51
Sean R. Stowell, Connie M. Arthur, Richard D. Cummings, and Christa L. Feasley

4 Evaluation of Galectin Binding by Frontal Affinity
Chromatography (FAC) .. 63
Jun Iwaki and Jun Hirabayashi

5 Probing Lectin–Mucin Interactions by Isothermal
Titration Microcalorimetry .. 75
Tarun K. Dam and C. Fred Brewer

6 Examination of Whole Cell Galectin Binding by Solid Phase
and Flow Cytometric Analysis ... 91
Anne Leppänen, Connie M. Arthur, Sean R. Stowell, and Richard D. Cummings

7 Evaluation of Galectin Binding by Surface Plasmon Resonance 105
Padmaja Mehta-D’souza

8 Examining Galectin Binding Specificity Using Glycan Microarrays 115

9 Methods for Assessing the Effects of Galectins on Leukocyte Trafficking 133
Beatrice R. Gittens, Rachael D. Wright, and Dianne Cooper

10 Examination of the Role of Galectins in Plasma Cell Differentiation 153
Chih-Ming Tsai and Kuo-I Lin

11 Examination of Galectin-Induced Lattice Formation
on Early B-Cell Development ... 169
Stéphane J.C. Mancini, Latifa Elantak, Annie Boned, Marion Espéli, Françoise Guerlesquin, and Claudine Schiff

12 Detection of Phosphatidylserine Exposure on Leukocytes
Following Treatment with Human Galectins 185
Contents

13 Examination of Galectins in Phagocytosis ... 201
 Huan-Yuan Chen, I-Chun Weng, Chi-Shan Li, Lei Wan, and Fu-Tong Liu

14 Assessing the Roles of Galectins in Regulating Dendritic Cell Migration Through Extracellular Matrix and Across Lymphatic Endothelial Cells .. 215
 Sandra Thiemann, Jeanette H. Man, and Linda G. Baum

15 Examination of the Role of Galectins in Intestinal Inflammation 231
 Atsushi Nishida, Cindy W. Lau, and Atsushi Mizoguchi

16 Study of Galectins in Tumor Immunity: Strategies and Methods 249

17 Galectins in the Regulation of Platelet Biology ... 269
 Maria A. Romaniuk, Gabriel A. Rabinovich, and Mirta Schattner

18 Examination of the Role of Galectins and Galectin Inhibitors in Endothelial Cell Biology ... 285

19 Regulation of Galectins by Hypoxia and Their Relevance in Angiogenesis: Strategies and Methods .. 293

20 Examination of the Role of Galectins During In Vivo Angiogenesis Using the Chick Chorioallantoic Membrane Assay ... 305

21 Examination of the Role of Galectins in Cell Migration and Re-epithelialization of Wounds ... 317
 Zhiyi Cao, Chandrasegar Saravanan, Wei-Sheng Chen, and Noorjahan Panjwani

22 Manipulating Galectin Expression in Zebrafish (Danio rerio) 327
 Chiguang Feng, Mihai Nita-Lazar, Nuria González-Montalbán, Jingyu Wang, Justin Mancini, Chinnarajan Ravindran, Hafiz Ahmed, and Gerardo R. Vasta

23 Examination of Galectin Localization Using Confocal Microscopy 343
 Daniel Giuliano Cerri, Connie M. Arthur, Lilian Cataldi Rodrigues, Marise Lopes Fermino, Lenaldo Branco Rocha, Sean R. Stowell, and Marcelo Dias Baruffi

24 Examination of the Regulation of Galectin-3 Expression in Cancer 355
 Hafiz Ahmed and Gargi Bandyopadhyaya
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Evaluation of the Role of Galectins in Parasite Immunity</td>
<td>Sarah Preston, Jillian Dunphy, Travis Beddoe, Els Meeusen, and Anna Young</td>
</tr>
<tr>
<td>26</td>
<td>Effect of Galectins on Viral Transmission</td>
<td>Michel Ouellet, Christian St-Pierre, Michel J. Tremblay, and Sachiko Sato</td>
</tr>
<tr>
<td>28</td>
<td>Examination of the Role of Galectins in Pre-mRNA Splicing</td>
<td>Ronald J. Patterson, Kevin C. Haudek, Patricia G. Voss, and John L. Wang</td>
</tr>
<tr>
<td>29</td>
<td>Analysis of the Intracellular Role of Galectins in Cell Growth and Apoptosis</td>
<td>Daniel K. Hsu, Ri-Yao Yang, Jun Saegusa, and Fu-Tong Liu</td>
</tr>
<tr>
<td>30</td>
<td>Nucleocytoplasmic Shuttling of Galectin-3</td>
<td>Eric J. Arnoys, Cheri M. Ackerman, and John L. Wang</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

CHERI M. ACKERMAN • Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA; Department of Chemistry, University of California, Berkeley, CA, USA
HAFTZ AHMED • Institute of Marine and Environmental Technology Baltimore, MD, USA; Department of Biochemistry, School of Medicine, University of Maryland, Baltimore, MD, USA
ERIC J. ARNOYS • Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI, USA
CONNIE M. ARTHUR • The Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
GARGI BANDYOPADHYAYA • Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
LINDA G. BAUM • Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, CA, USA
TRAVIS BEDDOE • Department of Agricultural Sciences Centre for AgriBiosciences La Trobe University, Bundoora, VIC, Australia
ANNIE BONED • Centre d’Immunologie de Marseille-Luminy, UM2, INSERM U1104, CNRS UMR7280, Aix-Marseille Université, Marseille, France
C. FRED BROWER • Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
ZHIYI CAO • New England Eye Center and Department of Ophthalmology, Tufts University, Boston, MA, USA
KITTIE C.M. CASTRICUM • Angiogenesis Laboratory Amsterdam, Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
JUAN P. CERLIANI • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
DANIEL GIULIANO CERRI • Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto-SP, SP, Brazil
HUAN-YUAN CHEN • Department of Dermatology, University of California Davis, School of Medicine, Sacramento, CA, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
WEI-SHENG CHEN • Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
DANIEL COMPAGNO • Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
DIANNE COOPER • William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
Contributors

Diego O. Croci • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Richard D. Cummings • Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA

Tomas Dalotto-Moreno • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Tarun K. Dam • Department of Chemistry, Michigan Technological University, Houghton, MI, USA

L. Sebastián Dergan-Dylon • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Marcelo Dias Baruffi • Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto-SP, Brazil

Jillian Dunphy • School of Community Health, Charles Sturt University, Albury, NSW, Australia

Latifa Elantak • Laboratoire d’Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, Marseille, France

Marion Espeli • University of Cambridge, School of Clinical Medicine, Cambridge, UK

Christa L. Feasley • Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Chenguang Fenga • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA

Marise Lopes Fermino • Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto-SP, SP, Brazil

Lucas Gentilini • Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

Beatrice R. Gittens • William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

Nuria González-Montalbána • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA

Arjan W. Griffioen • Angiogenesis Laboratory Amsterdam, Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands

Françoise Guerlesquin • Laboratoire d’Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255, Aix-Marseille Université, Marseille, France

Kevin C. Haudek • Center for Engineering Education Research, College of Engineering, Michigan State University, East Lansing, MI, USA

Jamie Heimbarg-Molinaro • The Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA

Jun Hirabayashi • Glycan Lectin Engineering Team, Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Daniel K. Hsu • Department of Dermatology, University of California, Davis, California
REBECCA P. HUGHEY • Renal-Electrolyte Division, Department of Medicine, Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA

JUN IWAKI • Lectin Application and Analysis Team, Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

CAROL L. KINLOUGH • Renal-Electrolyte Division, Department of Medicine, Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA

ESTHER A. KLEIBEUKER • Angiogenesis Laboratory Amsterdam, Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands

DIEGO J. LADERACH • Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

CINDY W. LAU • Molecular Pathology Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA

ANNE LEPPÄNEN • Department of Biosciences, University of Helsinki, Helsinki, Finland

CHI-SHAN LI • Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

KUO-I LIN • Genomics Research Center, Academia Sinica, Taipei, Taiwan

FU-TONG LIU • Department of Dermatology, University of California, Davis, California, Sacramento, CA, USA; Department of Dermatology University of California Davis, School of Medicine, Sacramento, CA, USA

JEANETTE H. MAN • Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Milwaukee, WI, USA

Stéphane J.C. Mancini • Centre d’Immunologie de Marseille-Luminy, UM2, INSERM U1104, CNRS UMR7280, Aix-Marseille Université, Marseille, France

Justin Mancini • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA

Els Meeusen • Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia

Padmaja Mehta-D’Souza • Oklahoma Medical Research Center, Oklahoma City, OK, USA

Santiago P. Méndez-Huergo • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

Atsushi Mizoguchi • Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka, Japan

Atsushi Nishida • Molecular Pathology Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA

Mihai Nita-Lazara • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA

Michel Ouellet • Laboratory of Human Immuno-Retrovirology, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, QC, Canada

Nooriahan Panjwani • New England Eye Center and Department of Ophthalmology and Developmental, Molecular and Chemical Biology, Tufts University, Boston, MA, USA

Ronald J. Patterson • Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

Paul A. Poland • Renal-Electrolyte Division, Department of Medicine, Laboratory of Epithelial Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
Contributors

SARAH PRESTON • Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia; Cooperative Research Centre for Sheep Industry Innovation, CJ Hawkins Homestead, University of New England, Armidale, NSW, Australia

GABRIEL A. RABINOVICH • Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

CHINNARAJAN RAVINDRAN • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA; Department of Marine Biotechnology, National Institute of Oceanography, Dona Paula, Goa, India

LENALDO BRANCO ROCHA • Institute of Biological and Natural Sciences, Triângulo Mineiro Federal University, Uberaba, MG, Brazil

LILIAN CATALDI RODRIGUES • Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil

MARIA A. ROMANUK • Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX/CONICET), National Academy of Medicine, Buenos Aires, Argentina

JUN SAEGUSA • Department of Rheumatology, School of Medicine, Kobe University, Kobe, Japan

MARINA SALATINO • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

CHANDRASESGAR SARAVANAN • Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA

SACHIKO SATO • Glycobiology and Bioimaging laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, QC, Canada

MIRTA SCHATTNER • Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX/CONICET), National Academy of Medicine, Buenos Aires, Argentina

CLAUDINE SCHIEFF • Centre d’Immunologie de Marseille-Luminy, UM2, INSERM U1104, CNRS UMR7280, Aix-Marseille Université, Marseille, France

IRIS A.E. SCHULKENS • Angiogenesis Laboratory Amsterdam, Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands

DAVE F. SMITH • The Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA

SEAN R. STOWELL • Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

CHRISTIAN ST-PIERRE • Glycobiology and Bioimaging laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, QC, Canada

HAROLD C. SULLIVAN • The Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

SANDRA THIEMANN • Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, CA, USA

VICTOR L.J.L. THIJSSSEN • Angiogenesis Laboratory Amsterdam, Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands; Angiogenesis Laboratory Amsterdam, Department of Radiation Oncology, VU University medical center, Amsterdam, HV, The Netherlands
MARTA A. TOSCANO • Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

MICHEL J. TREMBLAY • Laboratory of Human Immuno-Retrovirology, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec, QC, Canada

CHIH-MING TSAI • Genomics Research Center, Academia Sinica, Taipei, Taiwan

GERARDO R. VASTA • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA

PATRICIA G. VOSS • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA

LEI WAN • Department of Dermatology, University of California Davis, School of Medicine, Sacramento, CA, USA; School of Chinese Medicine, China Medical University, Taichung, Taiwan

JOHN L. WANG • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA

JINGYU WANG • Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA

I-CHUN WENG • Department of Dermatology, University of California Davis, School of Medicine, Sacramento, CA, USA; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

RACHAEL D. WRIGHT • William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK

RI-YAO YANG • Department of Dermatology, University of California, Davis, California

ANNA YOUNG • Department of Physiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia