Current Cancer Research

Series Editor
Wafik El-Deiry
University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
More information about this series at http://www.springer.com/series/7892
Targeted Therapy of Acute Myeloid Leukemia
No other hematopoietic malignancy has attracted the degree of attention and investigative passion as what is still termed “leukemia.” The condition was first described by John Hughes Benett in October 1845 and by Rudolf Virchow in November 1845 as the “white blood” disease, following earlier reports by Alfred Velpeau (1827) and others. Virchow coined the term “Leukaemie” in 1847. This was only shortly after Henri Dutrochet had discovered that “the cell is the fundamental element of organization,” thus formulating the underlying tenet of cell theory (1824), and Theodor Schwann and Matthias Jakob Schleiden had proposed (in 1839) that cells were the basic units of life. Thus, the discovery of leukemia was closely linked, personally and historically, to the most revolutionary new concepts of modern biology and medicine. Ten years later, Virchow, plagiarizing earlier work of Robert Remak, declared that cells originate from pre-existing cells by cell division and founded the field of cellular pathology. He also distinguished between splenic and lymphatic leukemias, which was of great value for the subsequent subclassification of what was initially thought to be a uniform entity.

Although cytogenetic and molecular analyses have dissected leukemias into an ever expanding universe of distinct maladies, the clinical designation of acute myeloid leukemia (AML) has so far survived further dissection, perhaps because of its life-threatening acuity. The immediate clinical challenge to the physician is to establish the correct diagnosis and to cope with complications that can engage all medical subspecialties, ranging from blood-product replacement to the treatment of septic shock and renal failure. In the center of the evolving drama is the individual patient, who, with no antecedent warning has to suddenly face his own mortality.

In the early 1900s, Paul Ehrlich started developing drugs to treat infectious diseases and developed the first “chemotherapy.” About 100 years later we are still following the paradigm that he established.

The modern era of chemotherapy evolved with the observation that the accidental exposure of humans to sulfur mustards resulted in the depletion of bone marrows and lymph nodes. Goodman and Gillman at Yale, following experiments in animals, initiated treatment of patients with non-Hodgkin’s lymphoma with nitrogen mustard. The first responses were observed in 1943 and stimulated the development of alkylating agents after the war. Farber treated children with leukemia with folate
antagonists (methotrexate) and Hitchings and Elion developed inhibitors of adenine metabolism (thiopurines) and observed major, although short-lived responses. Charles Heidelberger introduced 5-fluorouracil, the first “targeted” anticancer therapy. L-asparaginase is another example and once the double-helical structure of DNA was discovered, DNA-targeted agents such as cytosine arabinoside and daunomycin were successfully developed.

These chemotherapies were brought into clinical practice over the past 50 years and were based on evolving insights into the chemistry and biochemistry of the leukemic cell. Then as now, therapeutic strategies are attempting to exploit evolving scientific insights into metabolic and molecular abnormalities of the leukemia cell; therefore most therapies were “targeted” from their inception.

Subsequent steps in the development of targeted therapies were based on the discovery of tumor-associated antigens and monoclonal antibodies, on the plethora of newly identified mutations, evolving insights into the mechanisms of epigenetic gene regulation and the functions of oncogenic kinases. Much effort is now being focused on kinase inhibitors, following the spectacular success of the bcr-abl tyrosine kinase inhibitor Gleevec in Philadelphia-chromosome positive chronic myeloid and acute lymphoblastic leukemias.

What we are facing today is an exponential gain in our knowledge of the cell and molecular biology, immunology and epigenetic gene regulation of leukemias, which is fortunately matched by the zeal of laboratory and clinical investigators to translate scientific insights into clinical success. In addition, numerous treatment options have evolved and are being explored in clinical investigations even without clear identification and understanding of their targets. This approach is fueled by the notion that leukemia cells have an uncanny ability to evade highly specific targeted therapies and that less specific, multipotent “dirty” drugs may be more effective. Both approaches may have merits and are likely to contribute to the development of our therapeutic arsenal for the next decades.

Finally, it is becoming increasingly clear that many of the classical therapies are causing genetic damage in surviving cells that actually contribute to relapse. Hence, the development of nongenotoxic agents is paramount, such as BH3-mimetics and MDM2 inhibitors, that activate apoptosis pathways, presumably without causing DNA damage.

Targeted therapy also needs to define its cellular, not just molecular target. The concept of a highly drug resistant leukemia stem cell that contributes to relapse is now being accepted, but needs more attention by drug developers and clinicians alike. It has also become increasingly clear that the leukemia microenvironment is a partner of equal importance to leukemia cell-intrinsic resistance mechanisms for the survival, expansion and relapse of leukemia stem cells, leading to clinical relapse. Early attempts are under way to address both sides of this “Yin-Yang” equation, which is dramatically put in focus by the recent discovery that molecular changes in the microenvironment can cause, and not just support, leukemia development.

In this book it is attempted to summarize and interpret targeted AML therapies by pairing chapters describing the basic molecular biology of major targets with clinical results of targeted therapies, thus rendering the translational and clinical
researcher a useful tool to apply recent research data available to him in a more specific way. The exponential growth in knowledge exceeds the ability of any researcher to be up-to-date and we do hope that this collection of 43 chapters from the leading experts in their fields will make a difference in how we approach the ever-growing complexity of AML-directed therapeutics. Topics and targets are evolving with further elucidation of the underlying basic science, as the tools at our disposal.

The introductory chapters present updated contemporary classification systems of myeloid leukemias, their genetic defects and the proteomic alterations characteristic of AML. The basic mechanisms of apoptosis deregulation described in these chapters include the roles of BCl-2, IAP and p53 families of proteins and exemplify the concept of pairing basic science with evolving therapeutics such as BH3 and SMAC mimetics and MDM2 inhibitors that can reactivate p53 signaling.

Tyrosine kinase controlled cell signaling pathways have been elucidated in a large number of investigations following the spectacular success of Gleevec and its successors in the treatment of chronic myeloid leukemias. The book then transitions into a discussion of PIM, FLT3, NPM1, Ras/Raf/MAPK, PI3K/AKT/mTOR and aurora kinase functions and therapeutic targeting—a field which is rapidly developing as exemplified by the recent successes reported for IDH2 inhibitors but could not be included here.

Epigenetic modulators of acetylation and methylation are being covered and discussed along with epigenetic therapies which have already yielded significant therapeutic impact but will only increase with improved specificities and more precise definition of their targets. Although the underlying mechanisms of action are well studied, much work still needs to be done until we will have the ability to selectively affect the epigenetic regulation of specific genes.

PML-RARa and orphan nuclear receptors such as nor1 and nur77 have provided fascinating targets in leukemias, as is best exemplified in the improvement of the survival rates of patients with acute promyelocytic leukemias from 30 to 90% in just a few years, following the introduction of ATRA and arsenic trioxide. Nur77 may provide another target which is universally dysregulated in AML, not just in APL.

Rapid advances in tumor immunology led to the development of monoclonal antibodies that resulted in impressive response rates, alone or in combination with immunotoxins, in chronic and acute lymphocytic leukemias. These achievements have been more modest in AMLs, but recent advances in leukemic stem cell biology may make antibodies the most effective tools in the elimination of AML stem cells.

The leukemia microenvironment has graduated from supportive bystander to therapeutic target with the discovery that changes in bone marrow stroma cells, such as deletions of DICER which regulates microRNAs, results in the development of AMLs. First attempts to disrupt leukemia/stroma interactions by blockade of CXCR4 and VLA-4 signaling are yielding successes, but this field is clearly in more need of development. The recent identification of pronounced hypoxia in AML bone marrows makes hypoxia and hypoxia-induced genes novel targets in leukemia therapy.
MicroRNAs are also becoming attractive targets, as their complex regulatory control of many pathways of vital importance for leukemia proliferation and survival is being better understood.

All genetic and epigenetic alterations in leukemias finally result in metabolic alterations. Cancer metabolism, a field founded originally by Otto Warburg, has recently evolved in unexpected ways and will become of critical importance for the eradication of leukemias. Glycolysis, oxidative phosphorylation and fatty acid oxidation are at the center of leukemia metabolomics. The above mentioned development of IDH2 mutation inhibitors and their initial activity in patients whose AML cells carry this mutation provide an impressive example on how molecular genetics can be linked to epigenetic and metabolic functions and then be applied to the small subset of patients who may benefit.

The development of specific immunotherapies employing NK−, and T-cells is making its own way in the therapy of AML. CAR T-cell have yielded dramatic and sustained responses in certain leukemias and it is hoped that these concepts can be carried over into the treatment of AMLs. Hematopoietic transplantation has been refined and improved after half a century of unrelenting efforts and may be complemented by strategies utilizing mesenchymal stem cells as well.

All contributing authors hope that this book will serve as a useful guideline and provide inspiration and support to all scientists working in a field with high challenges but also great potential and importance for our collective future.

I wish to thank all authors for their thoughtful and insightful contributions. Special thanks go to Ms. Beate Buske-Kosel for her persistence, diligence and patience, without which this book would not have been possible.

Michael Andreeff
Contents

1 Genetics and Classification of Acute Myeloid Leukemia 1
 Alison R. Walker and Guido Marcucci

2 The Use of “Omics” to Guide the Selection of Targeted Therapy 27
 Steven M. Kornblau

Part I Apoptosis

3 Roles of Apoptosis-Regulating Bcl-2 Family Genes in AML 47
 John C. Reed

4 Bcl-2 Family: Translational Aspects ... 67
 Prithviraj Bose and Steven Grant

5 IAP Family of Proteins as Therapeutic Targets for Acute
 Myeloid Leukemia .. 95
 Bing Z. Carter and Michael Andreeff

6 TP53 Mutations in Acute Myeloid Leukemia 123
 Ulrike Bacher, Claudia Haferlach, Vera Grossmann,
 Susanne Schnittger and Torsten Haferlach

7 Targeting p53 Tumor Suppressor for AML Therapy 135
 Kojima Kensuke and Lyubomir T. Vassilev

8 AML-Selective Apoptosis Induction by Rationally Designed
 Death Ligand Fusion Proteins ... 151
 Edwin Bremer and Wijnand Helfrich
Part II Signaling

9 PIM Kinases in AML ... 177
Lisa S. Chen and Varsha Gandhi

10 Development of Midostaurin as a Tyrosine Kinase Inhibitor 201
Gabriela Motyckova and Richard M. Stone

11 FLT3 in AML ... 215
Naval Daver and Farhad Ravandi

12 FLT3-ITD. Clinical (Sorafenib/AC220) 233
Naveen Pemmaraju and Jorge Eduardo Cortes

13 Nucleophosmin (NPM1) .. 251
Ramesh Balusu, Warren Fiskus and Kapil N. Bhalla

14 Raf/MEK/ERK Signaling .. 275
James A. McCubrey, Linda S. Steelman, Jörg Bäsecke and Alberto M. Martelli

15 The Role of Translational Medicine in Optimization of Therapies Targeting the RAS-MAP Kinase Pathway 307
Judith S. Sebolt-Leopold

16 Clinical Use of Farnesyltransferase Inhibitors 325
Chezi Ganzel and Jacob M. Rowe

17 The PI3K-AKT-mTOR Signaling Network in AML 335
Brandon Beagle and David A. Fruman

18 Targeting the PI3 Kinase-mTOR Signaling Pathway in AML 363
Martin Carroll

19 Aurora Kinases ... 371
Subrata Sen and Hiroshi Katayama

20 The Clinical Development of Aurora Kinase Inhibitors in Acute Myeloid Leukemia ... 391
Kevin R. Kelly, Ciara L. Freeman and Francis J. Giles

Part III Epigenetics

21 AML: Deacetylases ... 411
Margherita Ghisi and Ricky W. Johnstone
Contents

22 Methylation in AML: Clinical Applications ... 441
Naveen Pemmaraju, Guillermo Garcia-Manero and Farhad Ravandi

Part IV Nuclear Receptors

23 PML/RARA as the Master Driver of APL Pathogenesis and Therapy Response .. 461
Hugues de Thé, Jun Zhu, Rihab Nasr, Julien Ablain and Valérie Lallemand-Breittenbach

24 Arsenic Trioxide in Untreated APL ... 477
Elihu Estey

25 Targeting PML-RARα with Retinoids .. 489
Eytan M. Stein and Martin S. Tallman

26 NR4A Orphan Receptors as Drug Targets .. 509
Stephen Safe, Syng-Ook Lee, Cong Meng and Beiyan Zhou

Part V Cell Surface Receptors

27 Antibody-Based Therapeutics Targeting CD33, CD45, and CD66 531
Roland B. Walter, Oliver W. Press and Irwin D. Bernstein

Part VI Stem Cells

28 New Heterogeneity of the Leukemic Stem Cells ... 559
Dominique Bonnet

29 Targeting Leukemia Stem Cells .. 573
Duane C. Hassane and Monica L. Guzman

Part VII Microenvironment

30 Regulation of Hematopoiesis by CXCL12/CXCR4 Signaling 593
Daniel C. Link

31 CXCR4/CXCL12 as a Therapeutic Target .. 607
Geoffrey L. Uy and John F. DiPersio

32 VLA-4: A Cell’s Consequential Encounter ... 617
Thalia Papayannopoulou

33 VLA-4 Function and Prognosis in Acute Myeloid Leukemia 627
Pamela S. Becker and Frederick R. Appelbaum
34 VLA4 in Acute Lymphoblastic Leukemia
Halvard Bönig and Yong-Mi Kim

Part VIII Hypoxia

35 The Leukemic Bone Marrow Microenvironment: Targeting Hypoxia with Hypoxia-Activated Prodrugs
Juliana Benito, Marina Konopleva and William R. Wilson

Part IX Micro-RNAs

36 MicroRNAs as Therapeutic Targets
Maitri Y. Shah and George A. Calin

37 Clinical Implications of MicroRNAs in AML
Parvathi Ranganathan and Ramiro Garzon

Part X Metabolism

38 Inhibition of Glycolysis as a Therapeutic Strategy in Acute Myeloid Leukemias
Rob C. Laister, Mark D. Minden and Tak W. Mak

39 Molecular and Biochemical Basis for the Reprogramming of Intermediary Metabolism in Leukemia Cells
Ismael Samudio and Juliana Vélez

Part XI Cell Therapy

40 NK-Cell Immunotherapy for AML
Dean Anthony Lee, Laurence James Neil Cooper and Elizabeth J. Shpall

41 Allogeneic and Autologous T-cell Strategies to Enhance Targeting of Acute Myeloid Leukemias
Gerrit Weber, Catherine M. Bollard and A. John Barrett

42 Indications for Hematopoietic Transplantation for AML
Sairah Ahmed and Richard Champlin

43 Mesenchymal Stem/Stromal Cell-Targeted Therapies for Solid Tumors and Hematological Malignancies
Christopher H. Booth, Lysette Munktus, Karen Bussard, Erika Spaeth, Michael Andreeff and Frank C. Marini

Erratum

Index
Contributors

Julien Ablain Université Paris Diderot, Sorbonne Paris Cité, Paris cedex 10, France
INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d’Hématologie, Paris cedex 10, France
CNRS UMR 7212, Paris cedex 10, France

Sairah Ahmed Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Michael Andreeff Paul and Mary Haas Chair in Genetics, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Frederick R. Appelbaum Seattle Cancer Care Alliance and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Jörg Bäsecke Department of Medicine, University of Göttingen, Göttingen, Germany

Halvard Bönig University of Washington, Seattle, WA, USA
Institute for Transfusion Medicine and Immunohematology, Department of Cellular Therapeutics/Cell Processing, Goethe University School of Medicine and German Red Cross Blood Service Baden-Württemberg-Hesse, Frankfurt am Main, Germany

Ulrike Bacher MLL Munich Leukemia Laboratory, Munich, Germany

Ramesh Balusu Kansas Masonic Cancer Research Institute, University of Kansas Medical Center, Kansas City, KS, USA

A. John Barrett Stem Cell Allogenic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
Brandon Beagle Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA

Pamela S. Becker Division of Hematology and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, University of Washington, Seattle, WA, USA

Juliana Benito Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Irwin D. Bernstein Clinical Research Division, Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA, USA

Kapil N. Bhalla Houston Methodist Research Institute, Houston, TX, USA

Catherine M. Bollard Blood+Marrow Transplantation, Children’s National Health System, Washington, DC, USA

Dominique Bonnet Haematopoietic Stem Cell Laboratory Cancer Research UK, London Research Institute, London, UK

Christopher H. Booth Wake Forest Institute of Regenerative Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA

Prithviraj Bose Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA

Edwin Bremer Department of Surgery/Translational Surgical Oncology, University Medical Center Groningen, Groningen, GZ, The Netherlands

Karen Bussard Wake Forest Institute of Regenerative Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA

George A. Calin Department of Experimental Therapeutics, Houston, USA

Graduate School of Biomedical Sciences, Houston, USA

Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

Martin Carroll Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Bing Z. Carter Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Richard Champlin Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Lisa S. Chen Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Laurence James Neil Cooper Division of Pediatrics Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Jorge Eduardo Cortes Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Naval Daver Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Hugues de Thé Université Paris Diderot, Sorbonne Paris Cité, Paris cedex 10, France

 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris cedex 10, France

 CNRS UMR 7212, Paris cedex 10, France

 Pole Sino-Francais des Sciences du Vivant et de Génomique de l'Hôpital Rui Jin, Rui-Jin Hospital affiliated with Jiao Tong University, Shanghai, China

 Department Molecular Pathology and Virology, INSERM U 944 et CNRS UMR 7212, Institut Universitaire d'Hématologie, Paris Cedex 10, France

Lee Anthony Dean Division of Pediatrics Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

John F. DiPersio Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA

Elihu Estey University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Warren Fiskus Kansas Masonic Cancer Research Institute, University of Kansas Medical Center, Kansas City, KS, USA

Ciara L. Freeman Department of Haematology, Barts and The London NHS Trust, London, E1 2ES, UK

David A. Fruman Department of Molecular Biology & Biochemistry and Institute for Immunology, University of California, Irvine, CA, USA

Varsha Gandhi Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

 Department of Experimental Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Chezi Ganzel Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel

Guillermo Garcia-Manero Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Ramiro Garzon College of Medicine, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA

Margherita Ghisi Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia

Francis J. Giles HRB Clinical Research Facility, Galway & Trinity College Dublin, National University of Ireland, Galway, Ireland

Steven Grant Division of Hematology and Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA

Vera Grossmann MLL Munich Leukemia Laboratory, Munich, Germany

Monica L. Guzman Department of Medicine, Hematology, and Medical Oncology, Pharmacology in Medicine, Weill Medical College of Cornell University, New York, NY, USA

Claudia Haferlach MLL Munich Leukemia Laboratory, Munich, Germany

Torsten Haferlach MLL Munich Leukemia Laboratory, Munich, Germany

Duane C. Hassane Department of Medicine, Hematology, and Medical Oncology, Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY, USA

Wijnand Helfrich Department of Surgery/Translational Surgical Oncology, University Medical Center Groningen, Groningen, GZ, The Netherlands

Ricky W. Johnstone Cancer Therapeutics Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia

Hiroshi Katayama Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Kevin R. Kelly Institute for Drug Development, Cancer Therapy, and Research Center, University of Texas, Health Science Center, Hematology Clinic—Cancer Therapy & Research Center, San Antonio, TX, USA

Kojima Kensuke Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Yong-Mi Kim Department of Pediatrics, Division of Hematology and Oncology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
Marina Konopleva Division of Cancer Medicine—Unit 448, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Steven M. Kornblau Department of Leukemia and Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

Rob C. Laister Ontario Cancer Institute, Princess Margaret Hospital, Toronto Medical Discovery Tower, Toronto, ON, Canada

Valérie Lallemand-Breitenbach Université Paris Diderot, Sorbonne Paris Cité, Paris cedex 10, France

CNRS UMR 7212, Paris cedex 10, France

Dean Anthony Lee Division of Pediatrics Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Syng-Ook Lee Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA

Daniel C. Link Division of Oncology, Department of Medicine, Washington University School of St. Louis, Saint Louis, MO, USA

Tak W. Mak Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada

Guido Marcucci The Ohio State University, Department of Internal Medicine—Division of Hematology, 898 Biomedical Research Tower, Columbus, OH, USA

Frank C. Marini Wake Forest Institute of Regenerative Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA

Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Alberto M. Martelli Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell’Apparato Locomotore, Università di Bologna, Bologna, Italy

IGM-CNR, Bologna, Italy

James A. McCubrey Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA

Cong Meng Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA

Mark D. Minden Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada

Gabriela Motyckova Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
Lysette Mutchus Wake Forest Institute of Regenerative Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA

Rihab Nasr Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon

Thalia Papayannopoulou Department of Medicine, Division of Hematology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Naveen Pemmaraju Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA

Oliver W. Press Fred Hutchinson Cancer Research Center, Department of Medicine/Division of Medical Oncology, University of Washington, Seattle, WA, USA

Parvathi Ranganathan College of Medicine, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA

Farhad Ravandi Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

3Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

John C. Reed Sanford Burnham Institute for Medical Research, La Jolla, CA, USA

Jacob M. Rowe Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel

Technion, Israel Institute of Technology, Haifa, Israel

Stephen Safe Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA

Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA

Ismael Samudio Biochemistry Laboratory # 301, Pontificia Universidad Javeriana, Bogota, Colombia

Susanne Schnittger MLL Munich Leukemia Laboratory, Munich, Germany

Judith S. Sebolt-Leopold Translational Oncology Program, University of Michigan, Comprehensive Cancer Center, Ann Arbor, MI, USA

Subrata Sen Department of Translational Molecular Pathology, Unit 951, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Maitri Y. Shah Department of Experimental Therapeutics, Houston, USA

Graduate School of Biomedical Sciences, Houston, USA
Contributors

Elizabeth J. Shpall Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Erika Spaeth Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Linda S. Steelman Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA

Eytan M. Stein Medical Oncology and Hematology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Richard M. Stone Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Martin S. Tallman Leukemia Service, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical Center, New York, NY, USA

Geoffrey L. Uy Washington University School of Medicine, Saint Louis, MO, USA

Juliana Vélez Biochemistry Laboratory # 301, Pontificia Universidad Javeriana, Bogota, Colombia

Lyubomir T. Vassilev Discovery Oncology, Roche Research Center, Hoffmann-La Roche Inc, Nutley, NJ, USA

Alison R. Walker The Ohio State University, Department of Internal Medicine—Division of Hematology, 898 Biomedical Research Tower, Columbus, OH, USA

Roland B. Walter Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine/Division of Hematology, University of Washington, Seattle, WA, USA

Gerrit Weber University Children’s Hospital, Pediatric Hematology/Oncology, University of Wuerzburg, Houston, TX, USA

William R. Wilson Auckland Cancer Society Research Centre, University of Auckland, Auckland, NZ, USA

Beiyan Zhou Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA

Jun Zhu Université Paris Diderot, Sorbonne Paris Cité, Paris cedex 10, France

INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Paris cedex 10, France

CNRS UMR 7212, Paris cedex 10, France

Pole Sino-Français des Sciences du Vivant et de Génomique de l'Hôpital Rui Jin, Rui-Jin Hospital affiliated with Jiao Tong University, Shanghai, China