Cancer Vaccines

Methods and Protocols

Edited by

Michael J.P. Lawman and Patricia D. Lawman

Morphogenesis, Inc., Tampa, FL, USA

Humana Press
Cancer immunotherapies, which include cancer vaccines, are novel therapeutic modalities being added to the armamentarium for cancer management/treatments that are finally becoming available to cancer patients around the world. In contrast to chemo- and radiotherapies, cancer vaccines are not normally associated with severe side effects, and unlike these therapies which directly kill the tumor cells and normal rapidly dividing cells in the body, cancer vaccines and other immunotherapies exert their effect by stimulating the body’s immune system to focus on the cancer cells alone, remove them, and consequently reduce the severity of the disease, generally without toxicity. Given these characteristics, cancer vaccines offer cancer patients a more focused and gentler means of cancer treatment that is far less detrimental to their bodies and is cognizant of the patient’s wish for a better quality of life.

The status of the patient’s immune system is the vital biological element affecting the outcome of cancer immunotherapy. However, each individual’s immune status is in turn affected by factors including age of the person, stage of the disease, prior treatment (chemotherapy or radiation therapy), tumor-induced immunosuppression, and the overall well-being of that person. As the term “immunotherapy” implies, the cells of the immune system perform the primary role in mediating the outcome of an immunotherapeutic regimen.

Most cancer vaccines to date have been designed to treat cancers that have already developed and therefore are termed “therapeutic.” The purpose of these cancer vaccines is to stop cancer cell growth and eventually reduce the tumor burden. Some experts in the field believe that cancer vaccines may be best suited to prevent cancer from returning or to eliminate cancer cells that were not killed by other, more conventional treatments.

Whether used as adjunctive or stand-alone therapies, the development of effective cancer vaccines requires a thorough understanding of the innate and adaptive immune system, immune effector cells, and cancer cells. However, despite the plethora of clinical and basic knowledge of cancer and the immune system, the issue boils down to the simple fact that the immune system, in most cases, does not see cancer cells as being “nonself” and thus dangerous. Even when the immune system does recognize some element of danger, it does not usually mount a clinically significant response against well-established tumors. This is mainly due to the fact that cancer cells have developed mechanisms that make it challenging for the immune system to target them for removal. The most significant issue is that cancer cells express normal “self”-antigens on the cell surface in addition to specific cancer-associated antigens, giving the abnormal cells an advantage against immune surveillance. Furthermore, during their rapid proliferation, these cancer cells frequently undergo further genetic mutations that may consequently lead to the loss or down-regulation of the cancer-associated antigens. Finally, cancer cells generate soluble factors that function to suppress an anticancer immune response.

Producing an effective therapeutic cancer vaccine has proven to be challenging. To be effective, cancer vaccines must achieve two objectives. First, cancer vaccines must stimulate
a robust tumor-specific immune responses against the correct target. Second, the immune responses must be potent enough to overcome the means by which cancer cells evade the adaptive immune response.

Therapeutic cancer vaccines can be divided into two broad categories, namely, (1) whole-cell vaccines, which encompass autologous, allogeneic, and dendritic cell vaccines, and (2) peptide or protein antigen vaccines. Dendritic cell vaccines fall into both “camps,” since this category can include the use of peptide and/or protein antigens as well as whole-cell lysates in the production of these vaccines.

The whole-cell vaccine approach encompasses the use of inactivated whole-tumor cells and/or whole-cell lysate as the vaccine. As such, these whole-cell vaccines present an array of tumor cell-associated antigens to the patient’s immune system. The approach of using whole-tumor cell as a vaccine eliminates the significant problem of having to identify the crucial antigen(s) for that cancer, most of which remain unknown, but almost always requires some type of immune adjuvant.

Peptide or protein antigen vaccines can be comprised of synthetic or purified native moieties that are representative of the tumor cell antigens displayed by the target tumors. These antigens can be used to immunize patients and have been shown to generate an immune response capable of destroying cells in the body that display these antigens. These types of cancer vaccines are dependent upon knowing the major tumor cell markers/antigens, their structure, and, if peptides are generated, the important epitope(s) required to generate a tumor-specific immune response. Dendritic cells, which orchestrate the function of immune cells, are often used as the “delivery vehicles” for these synthetic peptides and proteins to the immune system.

Researchers continue to acquire the elements and knowledge required in order to design cancer vaccines that can potentially accomplish both goals, i.e., to evoke a tumor-specific response and overcome the immuno-evasive mechanisms employed by the tumor cells. The purpose of this current volume is to gather many of the methods that have been developed to manufacture these cancer vaccines under one cover. The chapters are grouped according to the purpose or the aim of the cancer vaccine, namely, the manipulation and modification of immune cells; the manipulation and modification of tumor cells; and the manipulation of immune/tumor interactions and various delivery mechanisms. The volume also covers the subject of cancer vaccines in a more global sense with its section on the advances, challenges, and future of cancer vaccines.

In bringing this volume together, we have attempted to gather experts in the various subspecialty fields of cancer vaccines to share their expertise with current and future cancer vaccinologists, researchers, and clinicians. To this end, the authors have shared their experiences and given helpful “tips” through the Notes section in each chapter to aid in the development of future cancer vaccine design. It is hoped that the methods and protocols that have already been developed will lead to the further generation of cancer vaccines that are both safe and efficacious and that cancer vaccines will be the standard of care in the very near future.

The coeditors, Dr. Michael Lawman and Dr. Patricia Lawman, are grateful to the many authors who took time from their busy schedules to contribute to this volume. Without
their efforts, this book would never have materialized. In addition, the coeditors offer special thanks to Dr. Venkata Narasimhulu Kuppala. Speaking for all the contributing authors, we also are very grateful for the advice, encouragement, and support given to us by Dr. John and Jan Walker, editors in chief for the series Methods in Molecular Biology, and to the publishers Humana Press and Springer Science + Business Media for the opportunity to attempt this project.

Tampa, FL, USA

Michael J.P. Lawman, Ph.D.
Patricia D. Lawman, Ph.D.
Contents

Preface .. v
Contributors ... xiii

PART I MANIPULATION AND MODIFICATION OF IMMUNE CELLS:
DENDRITIC CELLS

1 Single-Step Antigen Loading and Maturation of Dendritic Cells
 Through mRNA Electroporation of a Tumor-Associated Antigen
 and a TriMix of Costimulatory Molecules .. 3
 Daphné Benteyn, An M.T. Van Nuffel, Sofie Wilgenhof,
 and Aude Bonehill

2 Generation of Multiple Peptide Cocktail-Pulsed Dendritic
 Cells as a Cancer Vaccine ... 17
 Hyun-Ju Lee, Nu-Ri Choi, Manh-Cuong Vo, My-Dung Hoang,
 Youn-Kyung Lee, and Je-Jung Lee

3 Pulsing Dendritic Cells with Whole Tumor Cell Lysates 27
 Laura Alaniz, Manglio M. Rizzo, and Guillermo Mazzolini

4 Antigen Trapping by Dendritic Cells for Antitumor Therapy 33
 Chiranjib Pal

5 Ex Vivo Loading of Autologous Dendritic Cells with Tumor Antigens 41
 Manglio M. Rizzo, Laura Alaniz, and Guillermo Mazzolini

6 Tumor Antigen-/Cytokine-Pulsed Dendritic Cells
 in Therapy Against Lymphoma .. 45
 Sumit K. Hira, Deepak Verma, and Partha P. Manna

7 Dendritic Cells Primed with Protein–Protein Fusion Adjuvant 57
 Liying Wang and Yongli Yu

8 Antigen-Specific mRNA Transfection of Autologous Dendritic Cells 77
 Fabian Benencia

9 Electroporation of Dendritic Cells with Autologous Total RNA
 from Tumor Material .. 87
 Francesca Milano and K.K. Krishnadath

10 Dendritic Cells Transfected with Adenoviral Vectors as Vaccines 97
 Joseph Senesac, Dmitry Gabrilovich, Samuel Pirruccello,
 and James E. Talmadge

11 Genetic Modification of Dendritic Cells with RNAi 119
 Xiao-Tong Song
12 Fast Monocyte-Derived Dendritic Cell-Based Immunotherapy 131
Gamal Ramadan

13 Intratumoral Injection of BCG-CWS-Pretreated Dendritic Cells Following Tumor Cryoablation .. 145
Naoshi Kawamura, Masaru Udagawa, Tomonobu Fujita, Toshiharu Sakurai, Tomonori Yaguchi, and Yutaka Kawakami

14 Exploiting the CD1d-iNKT Cell Axis for Potentiation of DC-Based Cancer Vaccines .. 155
Roeland Lameris, Famke L. Schneiders, Tanja D. de Gruijl, and Hans J. van der Vliet

PART II MANIPULATION AND MODIFICATION OF IMMUNE CELLS:
T LYMPHOCYTES AND NK CELLS

15 Modification of T Lymphocytes to Express Tumor Antigens 169
Aaron E. Foster and Xiao-Tong Song

16 Genetic Modification of Mouse Effector and Helper T Lymphocytes Expressing a Chimeric Antigen Receptor ... 177
Liza B. John, Tess M. Chee, David E. Gilham, and Phillip K. Darcy

17 Genetic Modification of Cytotoxic T Lymphocytes to Express Cytokine Receptors .. 189
Serena K. Perna, Barbara Savoldo, and Gianpietro Dotti

18 Monitoring the Frequency and Function of Regulatory T Cells and Summary of the Approaches Currently Used to Inhibit Regulatory T Cells in Cancer Patients .. 201
Chiara Camisaschi, Marcella Tazzari, Licia Rivoltini, and Chiara Castelli

19 Cytokine Activation of Natural Killer Cells ... 223
Syh-Jae Lin, Pei-Tzu Lee, and Ming-Ling Kuo

PART III MANIPULATION AND MODIFICATION OF TUMOR CELLS

20 Loading of Acute Myeloid Leukemia Cells with Poly(I:C) by Electroporation .. 233
Eva Lion, Charlotte M. de Winde, Viggo F.I. Van Tendeloo, and Evelien L.J.M. Smits

21 Autologous Tumor Cells Engineered to Express Bacterial Antigens 243
Vijayakumar K. Ramiya, Maya M. Jerald, Patricia D. Lawman, and Michael J.P. Lawman

22 Tumor Cell Transformation Using Antisense Oligonucleotide 259
Mohamed R. Akl and Nebad M. Ayoub

23 The Direct Display of Costimulatory Proteins on Tumor Cells as a Means of Vaccination for Cancer Immunotherapy 269
Haval Shirwan, Esma S. Yolcu, Rajesh K. Sharma, Hong Zaho, and Orlando Grimany-Nuno
PART IV MANIPULATION OF IMMUNE/TUMOR INTERACTIONS

24 Cloning Variable Region Genes of Clonal Lymphoma Immunoglobulin for Generating Patient-Specific Idiotype DNA Vaccine 289
 Soung-chul Cha, Hong Qin, Ippei Sakamaki, and Larry Kwak

25 Heat Shock Proteins Purified from Autologous Tumors Using Antibody-Based Affinity Chromatography 305
 Christian Kleist, Marco Randazzo, Janina Jiga, and Peter Terness

26 Invariant Chain-Peptide Fusion Vaccine Using HER-2/neu 321
 Sonia A. Perez, George E. Peoples, Michael Papamichail, and Constantin N. Baxevanis

27 TLR-9 Agonist Immunostimulatory Sequence Adjuvants Linked to Cancer Antigens 337
 Hidekazu Shirota and Dennis M. Klinman

28 Production of Multiple CTL Epitopes from Multiple Tumor-Associated Antigens 345
 Rena Morita, Yoshikiko Hirohashi, Munehide Nakatsugawa, Takayuki Kanaseki, Toshibiko Torigoe, and Noriyuki Sato

29 Preparation of Polypeptides Comprising Multiple TAA Peptides 357
 Bing Ni, Zhengcai Jia, and Yuzhang Wu

30 Idiotype Vaccine Production Using Hybridoma Technology 367
 Susana Inoges, Ascensión López Díaz de Cerio, Helena Villanueva, Fernando Pastor, and Maurizio Bendandi

31 Preparation of Cancer-Related Peptide Cocktails that Target Heterogeneously Expressed Antigens 389
 Reshu Gupta and Pradip P. Sachdeva

PART V DELIVERY MECHANISMS

32 Making an Avipoxvirus Encoding a Tumor-Associated Antigen and a Costimulatory Molecule 407
 Paul M. Howley, Kerrilyn R. Diener, and John D. Hayball

33 Bacterial Vectors for the Delivery of Tumor Antigens 429
 Yan Wang, Bertrand Tousaint, and Audrey Le Gouëllec

34 Preparation of Peptide Microspheres Using Tumor Antigen-Derived Peptides 443
 Santwana Bhatnagar, Raza Ali Naqvi, Riyasat Ali, and D.N. Rao

35 Production of Antigen-Loaded Biodegradable Nanoparticles and Uptake by Dendritic Cells 453
 Vijaya Bharti Joshi, Sean M. Geary, and Aliager K. Salem

36 Development of Plasmid–Lipid Complexes for Direct Intratumoral Injection 467
 Rama P. Kotipatruni and Ganji Purnachandra Nagaraju
PART VI THE ADVANCES, CHALLENGES, AND FUTURE OF CANCER VACCINES

37 The Use of Dendritic Cells for Peptide-Based Vaccination in Cancer Immunotherapy 479
 Mohamed L. Salem

38 Advances in Host and Vector Development for the Production of Plasmid DNA Vaccines 505
 Juergen Mairhofer and Alvaro R. Lara

39 Challenges Facing the Development of Cancer Vaccines 543
 Mayer Fishman

40 Future of Cancer Vaccines ... 555
 Hauke Winter, Bernard A. Fox, and Dominik Rüttinger

Index ... 565
Contributors

MOHAMED R. AKL • College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
LAURA ALANIZ • Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
RIYASAT ALI • Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
NEHAD M. AYOUB • College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
CONSTANTIN N. BAXEVANIS • Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
MAURIZIO BENDANDI • Immunotherapy Program, University of Navarra Hospital, Pamplona, Spain
FABIAN BENENCIA • Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA; Molecular and Cell Biology Program, Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH, USA
DAPHNÉ BENTEYN • Laboratory of Molecular and Cellular Therapy, Department of Immunology–Physiology and the Dendritic Cell Bank, Vrije Universiteit Brussel, Brussels, Belgium
SANTWANA BHATNAGAR • Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
AUDE BONEHILL • Laboratory of Molecular and Cellular Therapy, Department of Immunology–Physiology and the Dendritic Cell Bank, Vrije Universiteit Brussel, Brussels, Belgium
CHIARA CAMISASCHI • Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
CHIARA CASTELLI • Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
ASCENSIÓN LÓPEZ DÍAZ DE CERIO • Immunotherapy Program, University of Navarra Hospital, Pamplona, Spain
SOUNG-CHUL CHA • Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
TESS M. CHEE • Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
NU-RI CHOI • Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology–Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; The Brain Korea 21 Project Center for Biomedical Human Resources, Chonnam National University, Gwangju, Republic of Korea
Contributors

PHILLIP K. DARCY • Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; Department of Pathology, University of Melbourne, Parkville, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia; Department of Immunology, Monash University, Clayton, VIC, Australia

KERRILYN R. DIENER • Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, Australia; Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia; Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia

GIANPIETRO DOTTI • Center for Cell and Gene Therapy, Department of Immunology and Department of Medicine, Baylor College of Medicine, Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA

MAYER FISHMAN • Experimental Therapeutics and Immunotherapy Programs, Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA

AARON E. FOSTER • Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA

BERNARD A. FOX • Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA

TOMONORI FUJITA • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan

DMITRY GABRILOVICH • H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL, USA

SEAN M. GEARY • College of Pharmacy, University of Iowa, Iowa City, IA, USA

DAVID E. GILHAM • Clinical and Experimental Immunotherapy, Department of Medical Oncology, Institute of Cancer Sciences, The University of Manchester, Manchester, UK

AUDREY LE GOUËLLEC • TIMC-TheREx Laboratory, La Tronche, France

ORLANDO GRIMANY-NUNO • Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA; James Brown Cancer Center, University of Louisville, Louisville, KY, USA

TANJA D. DE GRIJL • Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands

RESHU GUPTA • Department of Medical Genetics, Sir Ganga Ram Hospital, New Delhi, India

JOHN D. HAYBALL • Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, Australia; Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA, Australia

SUMIT K. HIRA • Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India

YOSHIHIKO HIROHASHI • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
MY-DUNG HOANG • Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology–Oncology, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; The Brain Korea 21 Project Center for Biomedical Human Resources, Chonnam National University, Gwangju, Republic of Korea

PAUL M. HOWLEY • Sementis Ltd., Richmond, VIC, Australia; Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, Australia; Sansom Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, Australia

SUSANA INOGES • Immunotherapy Program, University of Navarra Hospital, Pamplona, Spain

MAYA M. JERALD • Morphogenesis, Inc., Tampa, FL, USA

ZHENGCAI JIA • Institute of Immunology PLA, Third Military Medical University, Chongqing, China

JANINA JIGA • Department of Transplantation Immunology and Cell Therapies, Pius Branzeu Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania

LIZA B. JOHN • Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia

VIJAYA BHARTI JOSHI • College of Pharmacy, University of Iowa, Iowa City, IA, USA

TAKAYUKI KANASEKI • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan

YUTAKA KAWAKAMI • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan

NAOSHI KAWAMURA • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan

CHRISTIAN KLEIST • Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany

DENNIS M. KLINMAN • Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA

RAMA P. KOTIPATRUNI • Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA

K.K. KRISHNADATH • Center of Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands; Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands

MING-LING KUO • Department of Microbiology and Immunology, Graduate Institute of Biomedical Science, Chang Gung University, Kweishan, Taoyan, Taiwan

LARRY KWAK • Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

ROELAND LAMERIS • Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands

ALVARO R. LARA • Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Del. Álvaro Obregón, Mexico

MICHAEL J.P. LAWMAN • Morphogenesis, Inc., Tampa, FL, USA

PATRICIA D. LAWMAN • Morphogenesis, Inc., Tampa, FL, USA
HYUN-JU LEE • Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology–Oncology, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea

JE-JUNG LEE • Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology–Oncology, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; The Brain Korea 21 Project Center for Biomedical Human Resources, Chonnam National University, Gwangju, Republic of Korea; Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea

PEI-TZU LEE • Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan

YOUN-KYUNG LEE • Research Center for Cancer Immunotherapy and Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea

SYH-JAE LIN • Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan

EVA LION • Tumor Immunology Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

JUERGEN MAIRHOFER • Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria

PARTHA P. MANNA • Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India

GUILLERMO MAZZOLINI • Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina

FRANCESCA MILANO • Section of Hematology and Clinical Immunology, Department of Internal and Experimental Medicine, University of Perugia, Perugia, Italy

RENA MORITA • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan

GANJI PURNACHANDRA NAGARAJU • Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA

MUNEHIDE NAKATSUGAWA • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan

RAZA ALI NAQVI • Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India

BING NI • Institute of Immunology PLA, Third Military Medical University, Chongqing, China

AN M.T. VAN NUFFEL • Laboratory of Molecular and Cellular Therapy, Department of Immunology–Physiology and the Dendritic Cell Bank, Vrije Universiteit Brussel, Brussels, Belgium

CHIRANJIB PAL • Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, West Bengal, India

MICHAEL PAPAMICHAIL • Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece

FERNANDO PASTOR • Immunotherapy Program, University of Navarra Hospital, Pamplona, Spain

GEORGE E. PEOPLES • Department of Surgery, Brooke Army Medical Center, Houston, TX, USA

SONIA A. PEREZ • Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
Contributors

SERENA K. PERNA • Center for Cell and Gene Therapy, Baylor College of Medicine, Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
SAMUEL PIRRUCELLO • University of Nebraska Medical Center, Omaha, NE, USA
HONG QIN • Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
GAMAL RAMADAN • Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
VIJAYAKUMAR K. RAMIYA • Morphogenesis, Inc., Tampa, FL, USA
MARCO RANDAZZO • Department of Urology, Kantonsspital Aarau, Aarau, Switzerland
D.N. RAO • Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
LICIA RIVOLTINI • Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
MANGIO M. RIZZO • Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
DOMINIK RÜTTINGER • Laboratory of Clinical and Experimental Tumor Immunology, Department of Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University Munich, Munich, Germany
PRADIP P. SACHDEVA • Department of Medical Genetics, Sir Ganga Ram Hospital, New Delhi, India
IPPEI SAKAMAKI • Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
TOSHIHARU SAKURAI • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
MOHAMED L. SALEM • Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
ALIASGER K. SALEM • College of Pharmacy, University of Iowa, Iowa City, IA, USA
NORIYUKI SATO • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
BARBARA SAVOLDO • Center for Cell and Gene Therapy, Methodist Hospital and Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
FAMKE L. SCHNEIDERS • Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
JOSEPH SENESAC • Bellicum Pharmaceuticals, Houston, TX, USA
RAJESH K. SHARMA • Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA; James Brown Cancer Center, University of Louisville, Louisville, KY, USA
HIDEKAZU SHIROTA • Department of Clinical Oncology, Tohoku University, Sendai, Japan
HAVAL SHIRWAN • Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA; James Brown Cancer Center, University of Louisville, Louisville, KY, USA
EVELIEN L.J.M. SMITS • Laboratory of Experimental Hematology, Tumor Immunology Group, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
XIAO-TONG SONG • Department of Immunology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
JAMES E. TALMADGE • University of Nebraska Medical Center, Omaha, NE, USA
MARCELLA TAZZARI • Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
Viggo F.I. van Tendeloo • Laboratory of Experimental Hematology, Tumor Immunology Group, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

Peter Terness • Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany

Toshihiko Torigoe • Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan

Masaru Udagawa • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan; Department of Surgery, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan

Bertrand Toussaint • TIMC-TheREx Laboratory, La Tronche, France

Deepak Verma • Immunobiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India

Helena Villanueva • Immunotherapy Program, University of Navarra Hospital, Pamplona, Spain

Hans J. van der Vliet • Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands

Manh-Cuong Vo • Research Center for Cancer Immunotherapy, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Hwasun Hospital, Chonnam National University, Hwasun, Jeollanamdo, Republic of Korea; The Brain Korea 21 Project Center for Biomedical Human Resources, Chonnam National University, Gwangju, Republic of Korea

Liying Wang • Norman Bethune College of Medicine, Jilin University, Changchun, China

Yan Wang • TIMC-TheREx Laboratory, La Tronche, France

Sofie Wilgenhof • Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology and the Dendritic Cell Bank, Vrije Universiteit Brussel, Brussels, Belgium; Department of Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium

Charlotte M. de Winde • Laboratory of Experimental Hematology, Tumor Immunology Group, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

Hauke Winter • Laboratory of Clinical and Experimental Tumor Immunology, Department of Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University Munich, Munich, Germany

Yuzhang Wu • Institute of Immunology PLA, Third Military Medical University, Chongqing, China

Tomonori Yaguchi • Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan

Esma S. Yolcu • Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA; James Brown Cancer Center, University of Louisville, Louisville, KY, USA

Yongli Yu • Norman Bethune College of Medicine, Jilin University, Changchun, China

Hong Zaho • Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA; James Brown Cancer Center, University of Louisville, Louisville, KY, USA