Modern Algorithms for Image Processing

Computer Imagery by Example Using C#

Vladimir Kovalevsky
Dedicated to my wife, Dr. Baerbel Kovalevsky
Table of Contents

About the Author ... ix
Acknowledgments ... xi
Introduction .. xiii

Part I: Image Processing ... 1

Chapter 1: Introduction ... 3

Chapter 2: Noise Reduction ... 5
 The Simplest Filter .. 6
 The Simplest Averaging Filter .. 6
 The Fast Averaging Filter ... 8
 The Fast Gaussian Filter ... 14
 The Median Filter .. 17
 Sigma Filter: The Most Efficient One ... 18
 Suppression of Impulse Noise ... 23

Chapter 3: Contrast Enhancement ... 43
 Automatic Linear Contrast Enhancement ... 43
 Histogram Equalization ... 45
 Measuring the Lightness of Color Images ... 49
 Contrast of Color Images ... 52
 Manually Controlled Contrast Enhancement ... 53

Chapter 4: Shading Correction with Thresholding ... 65
 Thresholding the Images ... 75

Chapter 5: Project WFshadBinImpulse .. 81
TABLE OF CONTENTS

Part II: Image Analysis ... 85

Chapter 6: Edge Detection .. 87

- Laplacian Operator .. 87
- The Method of Zero Crossing .. 89
- Are Zero Crossings of Laplacian Closed Curves? .. 89
- How to Eliminate Irrelevant Crossings ... 91
- Noise Reduction Before Using the Laplacian ... 92
- Blur During the Digitization and Extreme Value Filter .. 93
- Fundamental Errors of the Method of Zero Crossing in the Laplacian 98

Chapter 7: A New Method of Edge Detection ... 101

- Means for Encoding the Edges ... 102
- The Idea of an Abstract Cell Complex .. 103
- A Simple Method of Encoding Edges .. 105
- Improvements of the Method of Binarized Gradient .. 107
- Further Improvements of the Method of Binarized Gradient .. 120
- The Edge Detector of Canny ... 122
- Edges in Color Images ... 123
- Conclusions ... 125

Chapter 8: A New Method of Image Compression .. 127

- Using a Cell Complex for the Encoding of Boundaries ... 128
- Description of the Project WFcompressPal ... 131
- The Project WFrestoreLin ... 150

Chapter 9: Image Segmentation and Connected Components ... 167

- Segmentation by Quantizing the Colors .. 168
- Connected Components .. 168
- The Graph Traversal Algorithm and Its Code .. 171
 - The Pseudo-Code of the Breadth-First Algorithm .. 172
The Approach of Equivalence Classes .. 173
The Pseudo-Code of the Root Algorithm ... 177
The Project WFsegmentAndComp ... 179
Conclusion ... 186

Chapter 10: Straightening Photos of Paintings .. 187
The Principle of Straightening ... 189
Codes of Most Important Methods ... 196
Conclusion ... 203

Chapter 11: Polygonal Approximation of Region Boundaries and Edges 205
The Problem of Polygonal Approximation ... 205
Schlesinger’s Measure of Similarity of Curves ... 206
Statement of the Approximation Problem ... 207
Algorithms for Polygonal Approximation ... 207
 The Split-and-Merge Method ... 208
 The Sector Method .. 209
 The Improvement of the Sector Method .. 210
Replacing Polygons by Sequences of Arcs and Straight Lines 211
 Definitions and the Problem Statement ... 211
 The Approximate Solution .. 212
The Project WFpolyArc ... 217
 Methods Used in the Project WFpolyArc .. 218
Precision of the Calculation of the Radii ... 225
Conclusion ... 226

Chapter 12: Recognition and Measurement of Circular Objects 227
Mathematical Foundation of the Method ... 228
The Project WFcirclereco .. 232
 The Form of the Project WFcirclereco .. 233
TABLE OF CONTENTS

Chapter 13: Recognition of Bicycles in Traffic
- Mathematical Foundation of Ellipse Recognition .. 243
- The Project WFellipseBike .. 247
- Another Method of Recognizing the Direction .. 258

Chapter 14: A Computer Model of Cell Differentiation 261
- Conclusion .. 266

References ... 267

Index .. 269
About the Author

Vladimir Kovalevsky received his diploma in physics from the Kharkov University (Ukraine), his first doctoral degree in technical sciences from the Central Institute of Metrology (Leningrad), and his second doctoral degree in computer science from the Institute of Cybernetics of the Academy of Sciences of the Ukraine (Kiev) where he headed the Department of Pattern Recognition for more than a decade.

Vladimir has been living in Germany since 1983. He was a researcher at the Central Institute of Cybernetics of the Academy of Sciences of the GDR, Berlin, a professor of computer science at the University of Applied Sciences Berlin, and a scientific collaborator at the University of Rostock.

He has been a visiting researcher at the University of Pennsylvania, a professor at the Manukau Institute of Technology in New Zealand, and a professor at the Chonbuk National University in South Korea. He has reviewed for the journals *Applied General Topology*, *Computer Vision and Image Understanding*, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, and others.

Vladimir has been a plenary speaker at conferences in Europe, the United States, and New Zealand. His research interests include digital geometry, digital topology, computer vision, image processing, and pattern recognition. He has published four monographs and more than 180 journal and conference papers on image analysis, digital geometry, and digital topology.
Acknowledgments

I wish to acknowledge valuable and fruitful discussions with Boris Flach, Reinhard Klette, Ulrich Koethe, Alexander Kovalevsky, Volkmar Miszalok, and Peer Stelldinger. These discussions have significantly contributed to this work.

I would like to express my special appreciation to Alexander V. Kovalevsky, who helped significantly as an experienced programmer in the development of my projects.
Introduction

This book presents a collection of algorithms and projects for processing two-dimensional images. I developed and investigated the algorithms. Special emphasis is placed on computer solutions of problems related to the improvement of the quality of images, with image analysis and recognition of some geometrically definable objects. New data structures useful for image analysis are presented. The description of all algorithms contains examples of source code in the C# programming language. Descriptions of projects contain source code that can be used by readers.

With this book I intend to help you develop efficient software for processing two-dimensional images. There are a lot of books on image processing, but important algorithms are missing from these books. I have developed many efficient algorithms as a new and important contribution to this area.

I have paid great attention to solutions of problems in image analysis. On the other hand, problems of improving the quality of images are important for the arts. My wife is a recognized specialist in the history of the arts, and her publications often use copies of famous pictures and drawings. The photographs of these artworks are often of low quality. Often photographs of historical drawings illustrating the work of a painter are of such low quality that it is almost impossible to clearly see the contents of the image. Improving these images is therefore very important. In such cases, the programs I have developed for improving the quality of pictures are very useful.

I have developed efficient algorithms for recognizing circles and ellipses in noisy images. These algorithms can be used for recognizing objects with a shape approximating a circle; for example, apples, mushrooms, and so on. They can also be used for recognizing bicycles in images of traffic because the wheels of bicycles are ideal circles, but if the bicycle is positioned in such a way that the plane of its frame is not orthogonal to the viewing ray, then its wheels look like ellipses rather than circles. I was therefore forced to develop efficient algorithms for recognizing ellipses in noisy images as well. My efforts were successful and the book contains a chapter devoted to the recognition of bicycles in noisy images.

The book contains descriptions of numerous algorithms for image analysis, including these:
• Manually controlled thresholding of shading corrected images.
• A fast algorithm for simultaneously labeling all connected components in a segmented image.
• A new efficient method of edge detection.
• A fast algorithm for approximating digital curves by polygons and for estimating the curvature of circular arcs approximating the curve.
• Algorithms for recognition and measurement of circular or elliptical objects in color images.

Among the algorithms for image improvement, the most important are the following:
• The algorithm for rectifying photographs of paintings taken at an oblique angle.
• An algorithm correcting images of nonuniformly illuminated scenes.
• The algorithm for improving the contrast of images of nonuniformly illuminated scenes.
• The best algorithm for reducing Gaussian noise (the so-called Sigma-Filter).
• The algorithm for reducing impulse noise.

All descriptions are followed by a pseudo-code similar to the C# programming language. Most of the descriptions contain source code that can be copied from the text and used directly in a Windows Forms program written in the C# .NET language.

All source code and figures are included in a download file (which you can access via the Download Source Code button located at www.apress.com/9781484242360) so you can see the colors.