Beginning Robotics Programming in Java with LEGO Mindstorms

Wei Lu
My wife Ling, for her endless love and support over the past five years when I worked on this book.

My daughter Julia and son Ryan, for giving their dad the best fun times when testing all of the robot’s programs with them.
Contents at a Glance

About the Author ... xi
Acknowledgments ... xiii
Introduction ... xv

■ Chapter 1: Introduction to Lego Mindstorms and leJOS... 1
■ Chapter 2: Introduction to Motor Sensors ... 27
■ Chapter 3: Controlling Wheeled Vehicles ... 43
■ Chapter 4: Coordinators and Navigator API... 65
■ Chapter 5: Depth-First Search Algorithm and Its Implementation with Lego EV3............ 83
■ Chapter 6: Breadth-First Search and Its Implementation with Lego Mindstorms............. 101
■ Chapter 7: Hill-Climbing Search and Its Implementation with Lego Mindstorms............. 119
■ Chapter 8: Dijkstra’s Algorithm and Its Implementation with Lego Mindstorms.............. 139
■ Chapter 9: The A* Search Algorithm and Its Implementation with Lego Mindstorms..... 167
■ Chapter 10: Introducing the Touch Sensor and Ultrasonic Sensor 183
■ Chapter 11: Introducing the Light Sensor and Color Sensor ... 193
■ Chapter 12: Introduction to Behavior Programming .. 203
■ Chapter 13: Multithreading Programming with Java leJOS ... 219

Index .. 231
Contents

About the Author .. xxi
Acknowledgments .. xxi
Introduction ... xxv

Chapter 1: Introduction to Lego Mindstorms and leJOS ... 1
Introduction to Lego Mindstorms ... 1
Introduction to leJOS ... 3
 Lego Mindstorms EV3 .. 3
 Lego Mindstorms NXT ... 4
 Lego Mindstorms RCX .. 4
JDK Installation .. 5
Testing the JDK Installation ... 8
Installation of leJOS and Its Firmware on Lego EV3 ... 10
Eclipse IDE and Eclipse Plug-In for LeJOS EV3 .. 16
Summary .. 25

Chapter 2: Introduction to Motor Sensors ... 27
Basic Concepts of Java Programming .. 27
Introducing Motors ... 28
Introducing the Motor Class .. 29
 Controlling Basic Movement Using Motors ... 29
 Using a Tachometer for Inertia Testing ... 31
 Controlling the Accurate Rotation of Motors ... 33
 Interrupting Rotation .. 34
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Controlling Wheeled Vehicles</td>
</tr>
<tr>
<td>4</td>
<td>Coordinators and Navigator API</td>
</tr>
<tr>
<td>5</td>
<td>Depth-First Search Algorithm and Its Implementation with Lego EV3</td>
</tr>
<tr>
<td>6</td>
<td>Breadth-First Search and Its Implementation with Lego Mindstorms</td>
</tr>
</tbody>
</table>

Chapter 3: Controlling Wheeled Vehicles

- Introduction to Navigation API
- Basic Movement Using Pilot Classes
 - Tracing Out a Square
 - Tracing Out an Equilateral Triangle
 - Tracing Out a Regular Hexagon
- Summary

Chapter 4: Coordinators and Navigator API

- Cartesian Coordinate System Basics
- Navigator API Functions
- Controlling the EV3 Brick Hardware
- Programming Practice with the LCD Display
- Programming Practice with Key Presses
- Programming Practice with Navigator API
- Summary

Chapter 5: Depth-First Search Algorithm and Its Implementation with Lego EV3

- Overview of DFS Algorithm
- leJOS EV3-Based DFS Algorithm
- Summary

Chapter 6: Breadth-First Search and Its Implementation with Lego Mindstorms

- Overview of BFS Algorithm
- leJOS EV3-Based BFS Algorithm
- Summary
Chapter 7: Hill-Climbing Search and Its Implementation with Lego Mindstorms

Introduction to Heuristic Search ... 119
Overview of Hill-Climbing Search ... 123
leJOS EV3-Based Hill-Climbing Algorithm .. 131
Summary ... 138

Chapter 8: Dijkstra’s Algorithm and Its Implementation with Lego Mindstorms

Introduction to Dijkstra’s Algorithm ... 139
leJOS EV3-Based Dijkstra’s Algorithm .. 155
Summary ... 165

Chapter 9: The A* Search Algorithm and Its Implementation with Lego Mindstorms

What Is the A* Algorithm? ... 167
The Basic Idea of the A* Searching Strategy ... 167
Practice for Path Planning Using the A* Algorithm 177
Summary ... 181

Chapter 10: Introducing the Touch Sensor and Ultrasonic Sensor 183
Sensor Classes ... 183
Touch Sensor ... 184
Ultrasonic Sensor ... 186
Programming Practice with Touch Sensor .. 188
Programming Practice with Ultrasonic Sensor .. 190
Summary ... 191

Chapter 11: Introducing the Light Sensor and Color Sensor 193
Light Sensor ... 193
Color Sensor ... 195
Programming Practice with the Color and Light Sensors 197
Summary ... 202
Wei Lu is an Associate Professor of Computer Science at Keene State College in New Hampshire. He received his Ph.D. in Electrical and Computer Engineering from the University of Victoria, Canada. Prior to joining Keene State College, he was a Senior Researcher with the German Research Centre for Artificial Intelligence (DFKI GmbH) and worked with Q1 Labs Inc. (Security Systems Division, IBM since October 2011) as a Secure Software Engineer. His general areas of research interests include Artificial Intelligence and Cyber Security. He has had more than 50 papers published by peer-reviewed journals, book chapters, and conference proceedings. In addition, he coauthored, *Network Intrusion Detection and Prevention: Concepts and Techniques* (Springer, 2010) and has served as a technical program committee member and a technical reviewer for more than 70 international conferences and journals.
I would like to express my deepest gratitude to the following people:

My wife, for her endless love and support over the past five years when I worked on this book.

My daughter and son, for giving their dad the best fun times when testing all of the robot’s programs with them.

My parents, for giving me the encouragement to keep exploring new opportunities.

My colleagues Michael and Shari, for promoting Java robotics programming computer science education.

All my students, who participated the course, CS495 Artificial Intelligence and Robotics. This book would not be published without their motivation.

Nanyan Wang, for sharing his experience and insights in engineering and computer science and his technical review of this book.

The Apress team, for leading me through the entire jungle of authoring a book. Without their passion for publishing the best robotics programming book in Java for beginners, I would not have had an opportunity to write and publish this book.
Introduction

There are many cognitive tasks that people can do easily and almost subconsciously, but that have proven extremely difficult to program on a computer. Artificial Intelligence (AI) is the process of developing computer systems that can carry out these tasks, and it is devoted to the computational study of intelligent behavior. Such intelligent behavior includes a wide range of phenomena, such as perception, problem solving, use of knowledge, planning, learning, and communication in order to take a complicated task and convert it into simpler steps that the robotics system can handle. Based on the Lego Mindstorms robotic system, this book develops a wide range of techniques in the Java programming language for modeling these phenomena, including state-space search, several knowledge representation schemes, and task-specific methods.

The book begins with an introduction to Lego Mindstorms EV3 and leJOS, an open source project created to develop the technological infrastructure, and a tiny Java virtual machine in which to implant software into Lego Mindstorms products using Java technology. It then continues with a discussion of problem-solving techniques, such as breadth-first search, depth-first search, heuristic search, hill-climbing search, and A star (A*) search, and finishes with robotics behavior programming in Java multithreading programming with a set of sensors.

A major goal of AI is to give computers the ability to think, or in other words, mimic human behavior. The problem with this mimicry is that, unfortunately, computers don’t function in the same way as the human brain; that is, they require a series of well reasoned-out steps in order to find a solution. Therefore, one challenge in robotics programming is how to convert something complex into something simple that can be done by algorithms. This book bridges the gap between the theoretical AI algorithms and practical robotics systems by developing a set of algorithms and building them into the well-known Lego Mindstorms EV3 system in order to achieve an enhanced intelligence.