Job #: 71729

Author name: Crols

Title of book: CMOS Wireless

ISBN number: 0792399609
CMOS WIRELESS TRANSCEIVER DESIGN
ANALOG CIRCUITS AND SIGNAL PROCESSING
Consulting Editor
Mohammed Ismail
Ohio State University

Related Titles:

VLSI-COMPATIBLE IMPLEMENTATIONS FOR ARTIFICIAL NEURAL NETWORKS, Sied Mohdi Fakhraie, Kenneth Carless Smith, ISBN: 0-7923-9825-4
LOW-VOLTAGE LOW-POWER ANALOG INTEGRATED CIRCUITS, edited by Wouter Serdijn, ISBN: 0-7923-9608-1
FREQUENCY COMPENSATION TECHNIQUES LOW-POWER OPERATIONAL AMPLIFIERS, Ruud Easchauzie, Johan Huijsing, ISBN: 0-7923-9565-4
MODELING WITH AN ANALOG HARDWARE DESCRIPTION LANGUAGE, H. Alan Mantooth, Mike Fiegenbaum, ISBN: 0-7923-9516-6
LOW-VOLTAGE CMOS OPERATIONAL AMPLIFIERS: Theory, Design and Implementation, Satoshi Sakurai, Mohammed Ismail, ISBN: 0-7923-9507-7
DESIGN OF LOW-VOLTAGE BIPOLAR OPERATIONAL AMPLIFIERS, M. Jeroen Fonderie, Johan H. Huijsing, ISBN: 0-7923-9317-1
STATISTICAL MODELING FOR COMPUTER-AIDED DESIGN OF MOS VLSI CIRCUITS, Christopher Michael, Mohammed Ismail, ISBN: 0-7923-9299-X
ANALOG CMOS FILTERS FOR VERY HIGH FREQUENCIES, Bram Nauta, ISBN: 0-7923-9272-8
ANALOG VLSI NEURAL NETWORKS, Yoshiyasu Takefuji, ISBN: 0-7923-9273-6
ANALOG VLSI IMPLEMENTATION OF NEURAL NETWORKS, Carver A. Mead, Mohammed Ismail, ISBN: 0-7923-9049-7
AN INTRODUCTION TO ANALOG VLSI DESIGN AUTOMATION, Mohammed Ismail, José Franca, ISBN: 0-7923-9071-7
CMOS WIRELESS TRANSCEIVER DESIGN

by

JAN CROLS
Katholieke Universiteit Leuven,
Heverlee, Belgium

and

MICHIEL STEYAERT
Katholieke Universiteit Leuven,
Heverlee, Belgium

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.
Contents

Symbols, Conventions, Notations and Abbreviations vii
Preface xiii
1. WIRELESS COMMUNICATIONS 1
 1.1 Historical Overview 1
 1.2 Wireless Networks 2
 1.3 Full Integration and CMOS Transceivers 4
 1.4 The Presented Work 5
2. TRANSMITTERS AND RECEIVERS 9
 2.1 Introduction 9
 2.2 Transceivers 10
 2.3 Integrated Receivers 11
 2.4 Receiver Front-End Architectures 13
 2.5 Integrated Transmitters 23
 2.6 Conclusion 27
3. TRANSCEIVERS IN THE FREQUENCY DOMAIN 29
 3.1 Introduction : Filtering, Amplifying and Frequency Warping 29
 3.2 The Complex Signal Approach 31
 3.3 Operations on Complex Signals 33
 3.4 Complex Operations in the Analog Domain 44
 3.5 Transceiver Synthesis 52
 3.6 Conclusion 70
4. PERFORMANCE OF TRANSCEIVERS 71
 4.1 Introduction : Performance 71
 4.2 Behavioral Models for Building Blocks 73
 4.3 Structured Design of Transceivers 87
 4.4 A Design Methodology for Receiver Architectures 89
 4.5 Conclusion 101
5. HIGH-LEVEL SYNTHESIS
 5.1 Introduction 105
 5.2 Digital Wireless Applications 106
 5.3 GSM 107
 5.4 A Transceiver Architecture for GSM 114
 5.5 Conclusion 129

6. BUILDING BLOCKS FOR CMOS TRANSCEIVERS 135
 6.1 Introduction 135
 6.2 CMOS Mixers 137
 6.3 Spiral Inductors 152
 6.4 CMOS LNA's 166
 6.5 Quadrature Generators 169
 6.6 Low Frequency Active Integrated Polyphase Filters 193
 6.7 Conclusion 202

7. REALIZING A CMOS TRANSCEIVER 205
 7.1 Introduction 205
 7.2 Combining Building Blocks in a CMOS Transceiver 206
 7.3 Conclusion 213

8. GENERAL CONCLUSIONS 215

Appendix A–Process Information 221
Bibliography 225
Index 237
Symbols, Conventions, Notations and Abbrevations

Conventions and Notations

The following notations are used for the subscripts of voltage and current signals to indicate their instantaneous, AC or DC value. The notation method of [Laker 1994] is used.

\[I_{\text{OUT}} \] DC or average value of a current signal;
\[I_{\text{out}} \] amplitude of the AC-component of a current signal in steady state;
\[i_{\text{out}} \] instantaneous value of the AC component of a current signal;
\[i_{\text{OUT}} \] total instantaneous value of a current signal, so \(i_{\text{OUT}} = I_{\text{OUT}} + i_{\text{out}} \).

When the unit dBm is used throughout this text, it is not used in its original definition of 0 dBm being equal to 1 mW in 50 Ω. Unlike in discrete realizations, integrated RF systems often use impedance levels that differ from 50 Ω. In order to allow a comparison with classical discrete RF design, the unit dBm is still used, however re-defined as the corresponding voltage level in 50 Ω systems. 0 dBm is thus defined as 223 mV\text{rms} independent of the impedance level. 20 dBm is equal to 2.23 V\text{rms}.

Bibliographic References

In this text, bibliographic references contain information on the first author, the publication source and the year of publication, possibly extended with an extra character when more than one publication of the same author has been published in the journal in the same year. In this way the reader finds already a lot of information on bibliographic references within the text. The full information can of course be found in the bibliography. An example is [Crols JSSC95a]. ‘Crols’ are the first five letters of the first author’s name. ‘JSSC’ is an abbreviation for the journal the reference was published in. ‘95’ is the year of publication and the character ‘a’ has been added to
avoid ambiguity with another bibliographic reference. A list of the most important abbreviations used for publication sources has been given below. The absence of such an abbreviation in a reference indicates that it refers to a book.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD</td>
<td>Analog Circuit Design</td>
</tr>
<tr>
<td>CASII</td>
<td>IEEE Transactions on Circuits and Systems II</td>
</tr>
<tr>
<td>CICC</td>
<td>proceedings of the Custom Integrated Circuits Conference</td>
</tr>
<tr>
<td>ESSC</td>
<td>proceedings of the European Conference on Solid-State Circuits</td>
</tr>
<tr>
<td>ISSCC</td>
<td>digest of technical papers of the International Conference on Solid-State Circuits</td>
</tr>
<tr>
<td>JSSC</td>
<td>IEEE Journal of Solid-State Circuits</td>
</tr>
<tr>
<td>VLSI</td>
<td>proceedings of the Symposium on VLSI Circuits</td>
</tr>
</tbody>
</table>
Symbols
The symbol convention given below is used in the circuit schematics throughout this text. Unless otherwise indicated, the bulk of nMOS transistors is always assumed to be connected to the ground and the bulk of pMOS transistors is always assumed to be connected to their source.
Abbreviations

This list gives the full description of the abbreviations used throughout the text.

ADC analog-to-digital converter
AC alternating current
AGC automatic gain control
BB baseband
BER bit error rate
BPF bandpass filter
CMOS complementary MOS
CPU central processor unit
DAC digital-to-analog converter
dc direct current
DDS direct digital synthesis
DECT digital European cordless telephone
DR dynamic range
DSP digital signal processor
EEPROM electrically erasable programable ROM
FER frame error rate
FFT fast Fourier transform
FM frequency modulation
FS frequency shift
GaAs gallium arsenide
GMSK gaussian minimum shift keying
GSM global system mobile
HDn nth order distortion
HF high frequency
I in phase
IF intermediate frequency
IMn nth order intermodulation
IPn nth order intermodulation intersection point
ISDN integrated services digital network
LF low frequency
LNA low noise amplifier
LO local oscillator
LPF lowpass filter
LTF linear transfer function
modem modulator-demodulator
MOS metal oxide semiconductor
MOSFET MOS field effect transistor
NF noise figure
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTA</td>
<td>operational transconductance amplifier</td>
</tr>
<tr>
<td>PLL</td>
<td>phase locked loop</td>
</tr>
<tr>
<td>PSD</td>
<td>power spectral density</td>
</tr>
<tr>
<td>Q</td>
<td>in quadrature</td>
</tr>
<tr>
<td>QPSK</td>
<td>quad phase shift keying</td>
</tr>
<tr>
<td>RBER</td>
<td>residual bit error rate</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean square</td>
</tr>
<tr>
<td>ROM</td>
<td>read only memory</td>
</tr>
<tr>
<td>ΣΔ</td>
<td>sigma-delta</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>spec</td>
<td>specification</td>
</tr>
<tr>
<td>SSB</td>
<td>single sideband</td>
</tr>
<tr>
<td>SUSR</td>
<td>signal-to-unwanted-signal ratio</td>
</tr>
<tr>
<td>TDMA</td>
<td>time domain multiple access</td>
</tr>
<tr>
<td>transceiver</td>
<td>transmitter-receiver</td>
</tr>
<tr>
<td>VCO</td>
<td>voltage controlled oscillator</td>
</tr>
<tr>
<td>VGA</td>
<td>variable gain amplifier</td>
</tr>
<tr>
<td>Xtal</td>
<td>crystal</td>
</tr>
</tbody>
</table>
The world of wireless communications is changing very rapidly since a few years. The introduction of digital data communication in combination with digital signal processing has created the foundation for the development of many new wireless applications. High-quality digital wireless networks for voice communication with global and local coverage, like the GSM and DECT system, are only faint and early examples of the wide variety of wireless applications that will become available in the remainder of this decade.

The new evolutions in wireless communications set new requirements for the transceivers (transmitter-receivers). Higher operating frequencies, a lower power consumption and a very high degree of integration, are new specifications which ask for design approaches quite different from the classical RF design techniques. The integratability and power consumption reduction of the digital part will further improve with the continued downscaling of technologies. This is however completely different for the analog transceiver front-end, the part which performs the interfacing between the antenna and the digital signal processing. The analog front-end’s integratability and power consumption are closely related to the physical limitations of the transceiver topology and not so much to the scaling of the used technology. Chapter 2 gives a detailed study of the level of integration in current transceiver realization and analyzes their limitations.

In chapter 3 of this book the complex signal technique for the analysis and synthesis of multi-path receiver and transmitter topologies is introduced. With this technique, several new receiver and transmitter topologies are developed. An example is the low-IF receiver topology. The presented topologies all have in common that they combine the advantages of the classically used heterodyne architectures, i.e. a very good performance, with the advantage of a very good integratability.

Determining the building block specification for a new transceiver architecture is for RF designers mainly an experience-based process, resulting in long design cycles
and only a very gradual advancement of transceiver architectures. Here, in chapter 4, a formal methodology for the high-level design of transceiver architectures is presented. This methodology allows a structured and computer automatic high-level design, resulting in short design cycles and a fast evaluation of new transceiver architectures. The full high-level design of a low-IF / direct upconversion GSM transceiver front-end is presented in chapter 5.

A true full integration of a wireless transceiver requires that the analog front-end is integrated on the same die as the transceiver’s digital baseband signal processor. DSP’s use however standard CMOS technologies and these are less performant than the silicon bipolar and GaAs technologies that are used today for the integration of analog transceiver front-ends. Therefore, the integration of RF building blocks in CMOS is studied in chapter 6. Several chip realization are presented. In chapter 7 the capabilities of deep sub-micron CMOS used in combination with new highly integrated transceiver topologies for the implementation of wireless transceiver front-ends in the 1 to 2 GHz range is studied and demonstrated.

We also wish to express our gratitude to all persons who have contributed to the realization of this book and to the research described in this book. We would like to thank Prof. W. Sansen and Prof. H. De Man for carefully proofreading the manuscript. We would like to thank J. Craninckx, P. Kinget, M. Borremans and J. Janssens for their contribution made to this research. Our thanks also goes to the IWT (The Flemish Institute for Research in Science and Technology) for funding of the research.

Finally, we thank our families for their support and patience. Without it this research and this book would not have been possible.

Jan Crols
Michiel Steyaert

Department of Electrical Engineering - ESAT MICAS
Katholieke Universiteit Leuven
Leuven, Belgium, 1997