IN VITRO–IN VIVO CORRELATIONS
ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY

Editorial Board:
NATHAN BACK, State University of New York at Buffalo
IRUN R. COHEN, The Weizmann Institute of Science
DAVID KRITCHEVSKY, Wistar Institute
ABEL LAJTHA, N. S. Kline Institute for Psychiatric Research
RODOLFO PAOLETTI, University of Milan

Recent Volumes in this Series

Volume 414
ENZYMEOLOGY AND MOLECULAR BIOLOGY OF CARBONYL METABOLISM 6
Edited by Henry Weiner, Ronald Lindahl, David W. Crabb, and T. Geoffrey Flynn

Volume 415
FOOD PROTEINS AND LIPIDS
Edited by Srinivasan Damodaran

Volume 416
PLATELET-ACTIVATING FACTOR AND RELATED LIPID MEDIATORS 2: Roles in Health and Disease
Edited by Santosh Nigam, Gert Kunkel, and Stephen M. Prescott

Volume 417
DENDRITIC CELLS IN FUNDAMENTAL AND CLINICAL IMMUNOLOGY, Volume 3
Edited by Paola Ricciardi-Castagnoli

Volume 418
STREPTOCOCCI AND THE HOST
Edited by Thea Horaud, Anne Bouvet, Roland Leclerq, Henri de Montclos, and Michel Sicard

Volume 419
ADP-RIBOSYLATION IN ANIMAL TISSUES: Structure, Function, and Biology of Mono (ADP-ribosyl) Transferases and Related Enzymes
Edited by Friedrich Haag and Friedrich Koch-Nolte

Volume 420
ADVANCES IN CIRRHOSIS, HYPERAMMONEMIA, AND HEPATIC ENCEPHALOPATHY
Edited by Vicente Felipo

Volume 421
CELLULAR PEPTIDASES IN IMMUNE FUNCTIONS AND DISEASES
Edited by Siegfried Ansorge and Jürgen Langner

Volume 422
DIETARY FAT AND CANCER: Genetic and Molecular Interactions
Edited under the auspices of the American Institute for Cancer Research

Volume 423
IN VITRO–IN VIVO CORRELATIONS
Edited by David Young, John G. Devane, and Jackie Butler

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
IN VITRO–IN VIVO CORRELATIONS

Edited by

David Young
University of Maryland at Baltimore
Baltimore, Maryland

John G. Devane
Elan Corporation, plc
Athlone, Ireland

and

Jackie Butler
Elan Corporation, plc
Athlone, Ireland

PLENUM PRESS • NEW YORK AND LONDON
Proceedings of a workshop on In Vivo-In Vitro Relationships, held September 4–6, 1996, in Baltimore, Maryland

Softcover reprint of the hardcover 1st edition 1997
A Division of Plenum Publishing Corporation
233 Spring Street, New York, N. Y. 10013
http://www.plenum.com

10 9 8 7 6 5 4 3 2 1

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher
PREFACE

This book represents the invited presentations and some of the posters presented at the conference entitled “In Vitro-In Vivo Relationship (IVIVR) Workshop” held in September, 1996. The workshop was organized by the IVIVR Cooperative Working Group which has drawn together scientists from a number of organizations and institutions, both academic and industrial. In addition to Elan Corporation, which is a drug delivery company specializing in the development of ER (Extended Release) dosage forms, the IVIVR Cooperative Working Group consists of collaborators from the University of Maryland at Baltimore, University College Dublin, Trinity College Dublin, and the University of Nottingham in the UK. The principal collaborators are:

Dr. Jackie Butler, Elan Corporation
Prof. Owen Corrigan, Trinity College Dublin
Dr. Iain Cumming, Elan Corporation
Dr. John Devane, Elan Corporation
Dr. Adrian Dunne, University College Dublin
Dr. Stuart Madden, Elan Corporation
Dr. Colin Melia, University of Nottingham
Mr. Tom O'Hara, Elan Corporation
Dr. Deborah Piscitelli, University of Maryland at Baltimore
Dr. Araz Raoof, Elan Corporation
Mr. Paul Stark, Elan Corporation
Dr. David Young, University of Maryland at Baltimore

The purpose of the workshop was to discuss new concepts and methods in the development of in vitro-in vivo relationships for ER products. The original idea went back approximately 15 months prior to the workshop itself. For some time, the principal collaborators had been working together on various aspects of dosage form development. It was obvious that more and more of our time was spent discussing issues and aspects of IVIVR development since it plays such a key role in dosage form development, particularly for ER products. We felt it was important to provide a forum where scientists from industry, academia, and regulatory authorities could come together and discuss how best to develop methods in this complex area.

It is also important to emphasize and appreciate the background and context of the workshop. One can readily identify major milestones and initiatives over the last 10 years that have contributed significantly, either directly or indirectly, to the development of IVIVR methodology. In the last 5 years, the pace of these initiatives has accelerated, very much driven by the FDA. In particular, one can identify the SUPAC IR and ER Work-
shops of the early 90s, resulting in the 1995 issuance of the SUPAC IR guidance, with additional draft guidances prepared during 1996. In the context of IVIVR this has culminated in the issuance of the FDA draft guidance on IVIVC, which was completed just prior to the workshop.

At the point where we set a date for this workshop, we did not anticipate being so timely in relation to the issuance of the draft guidance. However, we believe that the discussions and ideas generated during the workshop provided a better understanding of the guidances and gave valuable feedback to the agency in what was the first public forum since the issuance of the guidance.

As one point of clarification, the Cooperative Working Group, who organized this meeting, talk about IVIVR. Many of the speakers and, indeed, the FDA draft guidance, referred to IVIVC. For the purposes of this workshop, these terms were viewed as interchangeable.
CONTENTS

1. Examples of in Vitro–in Vivo Relationships with a Diverse Range of Quality . . . 1
 R. J. Rackley

2. Dissolution Assay Development for in Vitro–in Vivo Correlations: Theory and
 Case Studies ... 17
 B. R. Rohrs, J. W. Skoug, and G. W. Halstead

3. In Vitro Dissolution Profile Comparison and IVIVR: Carbamazepine Case 31
 P. Sathe, Y. Tsong, and V. P. Shah

4. A General Framework for Non-Parametric Subject-Specific and Population
 Deconvolution Methods for in Vivo–in Vitro Correlation 43
 D. Verotta

5. Convolution-Based Approaches for in Vivo–in Vitro Correlation Modeling 53
 W. R. Gillespie

6. Approaches to IVIVR Modelling and Statistical Analysis 67
 A. Dunne, T. O’Hara, and J. Devane

7. Validation of in Vitro–in Vivo Correlation Models 87
 D. Young, J. A. Dowell, D. A. Piscitelli, and J. Devane

 J. Butler

9. The Biopharmaceutic Drug Classification and Drugs Administered in Extended
 Release (ER) Formulations .. 111
 O. I. Corrigan

10. Investigating in Vitro Drug Release Mechanisms Inside Dosage Forms:
 Monitoring Liquid Ingress in HPMC Hydrophilic Matrices Using
 Confocal Microscopy .. 129
 C. D. Melia, P. Marshall, P. Stark, S. Cunningham, A. Kinahan, and
 J. Devane
<table>
<thead>
<tr>
<th></th>
<th>Determination of Critical Manufacturing and Formulation Variables for a Hydrophilic Matrix Tablet Formulation Using an in Vitro Discriminatory Dissolution Method</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>P. Stark, A. Kinahan, S. Cunningham, J. Butler, T. O’Hara, A. Dunne, J. Connolly, and J. Devane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artificial Neural Network Based in Vitro–in Vivo Correlations</td>
<td>149</td>
</tr>
<tr>
<td>12</td>
<td>A. S. Hussain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting Dissolution Specifications for Modified-Release Dosage Forms</td>
<td>159</td>
</tr>
<tr>
<td>13</td>
<td>D. A. Piscitelli and D. Young</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of Methodologies for the Comparison of Dissolution Profile Data</td>
<td>167</td>
</tr>
<tr>
<td>14</td>
<td>T. O’Hara, A. Dunne, A. Kinahan, S. Cunningham, P. Stark, and J. Devane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assessing Whether Controlled Release Products with Differing in Vitro Dissolution Rates Have the Same in Vivo–in Vitro Relationship</td>
<td>173</td>
</tr>
<tr>
<td>15</td>
<td>G. Cao and C. Locke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comparison of Methodologies for Evaluating Regional Intestinal Permeability</td>
<td>181</td>
</tr>
<tr>
<td>16</td>
<td>A. Raoof, D. Moriarty, D. Brayden, O. I. Corrigan, I. Cumming, J. Butler, and J. Devane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Vitro–in Vivo Relationships of Several “Immediate” Release Tablets Containing a Low Permeability Drug</td>
<td>191</td>
</tr>
<tr>
<td>17</td>
<td>J. E. Polli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonlinear in Vitro–in Vivo Correlations</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Use of Nonlinear Mixed Effects Modelling in the Development of in Vitro–in Vivo Correlations</td>
<td>207</td>
</tr>
<tr>
<td>19</td>
<td>S. Bigora, D. Piscitelli, J. Dowell, J. Butler, C. Farrell, J. Devane, and D. Young</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Development of a Novel in Vitro Discriminatory Dissolution Method for a Class I Drug in a Matrix Tablet Formulation</td>
<td>217</td>
</tr>
<tr>
<td>20</td>
<td>C. Farrell, J. Butler, P. Stark, H. Madden, and J. Devane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Vivo–in Vitro Evaluation of the Impact of Accelerated Stability Conditions on a Hydrophilic Matrix Tablet</td>
<td>221</td>
</tr>
<tr>
<td>21</td>
<td>P. Stark, A. Kinahan, S. Cunningham, C. Farrell, J. Butler, M. Reilly, and J. Devane</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of in Vitro–in Vivo Correlations Using Various Artificial Neural Network Configurations</td>
<td>225</td>
</tr>
<tr>
<td>22</td>
<td>J. A. Dowell, A. S. Hussain, P. Stark, J. Devane, and D. Young</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact of IVIVR on Product Development</td>
<td>241</td>
</tr>
<tr>
<td>23</td>
<td>J. Devane</td>
<td></td>
</tr>
</tbody>
</table>
24. The Role of in Vitro–in Vivo Correlations (IVIVC) to Regulatory Agencies
 H. J. Malinowski
 261

25. Draft Guidance for Industry Extended-Release Solid Oral Dosage Forms:
 Lockwood, J. Henderson, R. Baweja, M. Hossain, N. Fleischer,
 L. Tillman, A. Hussain, V. Shah, A. Dorantes, R. Zhu, H. Sun, K. Kumi,
 S. Machado, V. Tammara, T. E. Ong-Chen, H. Mahayni, L. Lesko, and
 R. Williams
 269

 Discussion
 289

Index
 297