Earth Sciences and Archaeology
Earth Sciences and Archaeology

Edited by
Paul Goldberg
Boston University
Boston, Massachusetts

Vance T. Holliday
University of Wisconsin–Madison
Madison, Wisconsin

and

C. Reid Ferring
University of North Texas
Denton, Texas

Springer Science+Business Media, LLC
Earth sciences and archaeology / edited by Paul Goldberg, Vance T. Holliday, and C. Reid Ferring.

p. ; cm.

Includes bibliographical references and index.

DOI 10.1007/978-1-4615-1183-0

CC77.5 .E2 2000

930.1—dc21 99-058246

Softcover reprint of the hardcover 1st edition 2001

http://www.wkap.nl/

10 9 8 7 6 5 4 3 2 1

A C.I.P. record for this book is available from the Library of Congress

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher.
Contributors

Arthur Bettis, Department of Geoscience, University of Iowa, Iowa City, Iowa 52242

Ofer Bar-Yosef, Department of Anthropology, Peabody Museum, Harvard University, Cambridge, Massachusetts 02138

Marie-Agnès Courty, CRA-CNRS, Laboratoire de Science des Sol et Hydrologie, INA-PG, 78850 Grignon, France

Jill Cruise, University of London Guildhall and Greenwich University, London LU78J4, United Kingdom

C. Reid Ferring, Department of Geography, University of North Texas, Denton, Texas 76203

Charles Frederick, Department of Archaeology and Prehistory, University of Sheffield, Sheffield S1 4ET, United Kingdom

Norman Herz, Department of Geology, University of Georgia, Athens, Georgia 30602

Vance T. Holliday, Department of Geography, University of Wisconsin, Madison, Wisconsin 53706

Kenneth L. Kvamme, Department of Anthropology, University of Arkansas, Fayetteville, Arkansas 72701

David Leigh, Department of Geography, University of Georgia, Athens, Georgia 30602

Richard I. Macphail, Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom

Rolfe D. Mandel, Department of Geography, University of Kansas, Topeka, Kansas 66045
Jay Noller, Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331

Lee Nordt, Department of Geology, Baylor University, Waco, Texas 76798

W. Jack Rink, School of Geography and Geology, McMaster University, Hamilton, Ontario, Canada, L8S 4M1

Sarah Sherwood, Department of Sociology and Anthropology, Middle Tennessee State University, Murfreesboro, Tennessee 37132

Julie K. Stein, Department of Anthropology, University of Washington, Seattle, Washington 98195

James Stoltman, Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin 53706

Lisa E. Wells, Department of Geology, Vanderbilt University, Nashville, Tennessee 37235
Preface

Over the past several decades, a number of volumes have appeared on the subject of “Archaeological Geology” or “Geoarchaeology” (Davidson and Shackley, 1976; Herz and Garrison, 1998; Rapp and Gifford, 1985; Rapp and Hill, 1998; Waters, 1992). Although the supposed differences between these two endeavors continue to be discussed (e.g., Butzer, 1982; Rapp and Hill, 1998), here we are basically concerned with any subject that bridges the interface between the earth sciences and archaeology, with the earth sciences including a wide array of subjects, such as sedimentology, stratigraphy, geomorphology, pedology, geochemistry, geophysics, and geochronology. The number of books that focus on geoarchaeology (and the organization of groups such as the Archaeological Geology Division of the Geological Society of America, and the Geoarchaeology Interest Group of the Society for American Archaeology) demonstrate the increasing amount of and interest in geoarchaeology and the validity of considering geoarchaeology as a subdiscipline in its own right. These volumes also reflect the interest in geoarchaeology in universities throughout North America; this interest is further demonstrated by the Guide to Geoarchaeology Programs and Departments published by the Archaeological Geology Division of the GSA.

Among the earliest of the volumes on geoarchaeology was a collection of papers from a symposium titled “Sediments in Archaeology” held in England in the early 1970s (Davidson and Shackley, 1976). The papers from this groundbreaking effort were organized into themes that included Techniques, Sedimentary Environments (coastal, lacustrine, and terrestrial environments), and Biological Sediments. Although some of these articles were local in scope, those on methodology encompassed a number of techniques that included stratigraphy, magnetic properties of sediments as applied to prospection, petrography, phosphate chemistry, and cave sediments.

A decade or so later, Rapp and Gifford (1985) produced a multiauthored volume that was very much methodology oriented. It included a broad array of subjects and techniques and their applications to archaeological problems, including the following: geomorphology (including sedimentary and palaeoenviron-
ments), palynology, anthroools, geophysical surveying and archaeomagnetism, isotope and dating studies, and sourcing of materials.

More recently, a number of general geoarchaeology textbooks have appeared. The first in this group is by Waters (1992), which takes on a larger scale perspective, stressing geomorphology and site formation from a North American viewpoint. *Geoarchaeology* by Rapp and Hill (1998) covers most of the topics that are encompassed in modern geoarchaeological studies, ranging from field-based geomorphology/sedimentology to laboratory techniques. Published at about the same time was *Geological Methods for Archaeology* by Herz and Garrison (1998), which considers with some detail geological techniques in archaeology from a variety of aspects: geomorphology, sediments and soils, dating techniques, site exploration, and artifact analysis.

What struck us about these earlier collections—but less so with the most recent publications—is that articles tended to describe an earth science technique used in archaeology, provide some theoretical background, and then discuss the results. What seemed to be typically lacking were explicit statements of a number of issues: (1) the type(s) of problem being solved; (2) why a particular technique (or techniques) was being applied in the first place; (3) why this technique was the most suitable to tackle this problem; and (4) the implications of the results to both the archaeological and the earth science communities. Any ramifications directed toward these groups were commonly left to the readers to figure out for themselves.

We developed this book to avoid these shortcomings by making it as didactic as possible. We wanted to present a sampling of a variety of earth science techniques and strategies that can be used to answer problems that are of interest to both archaeologists and earth scientists. We attempted to choose techniques and their practitioners that represent up-to-date thinking and methodology on each subject. Some of these techniques are not widely performed or widely known. We stressed that authors should not present just a summary of technique or types of studies (and that they also avoid simply summarizing old research or publishing new results), but demonstrate how such studies are actually carried out. We wished the authors to convey some of their experiences as means of furnishing some practical information, a type of information that rarely gets into press. Finally, we wanted to acquaint different members of the academic community with concrete geoarchaeological problems and their significance. We hope that by explicitly stating the goals, techniques, and implications in each case, archaeologists will be made aware of the value of a particular technique, whereas the practicing or potential geoscientist would be exposed to possible problems that can be attacked along the suture of archaeological and geological research.

We hope this volume will have wide appeal to archaeologists and earth scientists alike. Archaeologists are increasingly making use of modern technologies and are becoming increasingly aware of the role of earth sciences in modern archaeology. The interest of earth scientists as well is much higher than it was in the late 1980s, and many universities are currently offering formal courses in geoarchaeology, when then there were few. The increased collaboration and awareness is clear to those of us who are involved in the production of the journal *Geoarchaeology*, where most of the contributions are joint efforts between archae-
ologists and earth scientists. Finally, the “explicit approach” we wish to promote in this collection of articles should make clear to scholars in both fields the wealth of opportunity that each community has to offer.

Not surprisingly, we were not able to provide papers on all subjects. First, this was not possible because of space limitations and the ever-increasing breadth of the discipline. For example, we would have liked to include chapters on a broad spectrum of aeolian deposits (both dunes and loess), but this would have been a formidable task for anyone. Similarly, coastal and periglacial environments, as well as colluvial settings, could also merit their own chapters. A discussion of general geoarchaeological problems that repeatedly arise would have been especially useful. Any number of regional or site-specific studies that carefully document the interface and interaction between archaeology and the earth sciences would have also constituted cogent additions. On the other hand, we believed that so much has been written about radiocarbon that we could reasonably forgo its inclusion in this publication. These and similar topics could readily fit into a volume of their own, and we can only hope that continued interest in the subject will bring about publication of such a book.

Second, certain subjects that were included in the original table of contents simply never made it to press. They were promised but not delivered. There was no time to approach other authors without significantly delaying the volume beyond our 2-year schedule. Such delays would also hold up those authors who did provide chapters. So, for example, a timely chapter on the “Stratigraphy and Sedimentology of Caves and Rockshelters” is missing. We had also wished to cover the topic of magnetic susceptibility in soils and in archaeological deposits, a subject well known in Europe, but unfortunately used relatively little in North America. A chapter specifically on fluvial landscapes in arid environments is also absent, much to our regret. Nevertheless, the subjects that are presented in this volume do constitute a realistic representation of the majority of techniques and themes involving the interaction of earth sciences and archaeology.

The book is organized into a series of sections that share common themes. The articles in Part I furnish background material that reflect broader issues. Holliday’s chapter titled “Quaternary Geosciences in Archaeology” considers a number of important issues, such as geologic time, the record of and reason for Quaternary environmental changes, and approaches to reconstructing past environments. These issues are critical in the communication and execution of proper and modern geoarchaeological research. Stein, in Chapter 2, provides a historical background of the study of site formation studies. This theme is critical to correctly documenting and interpreting the archaeological record, and now forms—or should form—the basis for modern archaeological research.

Geomorphological studies are the main focus of Part II. Frederick (Chapter 3) examines the nature of alluvial sequences and discusses in detail the explanations of some of their causes and interpretations, ranging from “natural” ones to those induced by human activities. Chapter 4 by Ferring examines fluvial landscapes from both arid and humid environments; he provides some basic information on this archaeologically significant geomorphic setting and shows how geoarchaeological sequences have been studied in the past. Wells, in Chapter 5, considers the relationship of settlement pattern to geomorphological change,
providing examples from both the New and Old Worlds. The second part concludes with a view by Noller (Chapter 6) of a promising new avenue of research along the interdisciplinary junction between archaeology and the earth sciences, archaeoseismology. He demonstrates how the archaeological record provides valuable information in understanding the effects of earthquakes on both past and modern societies.

Soils, sediments, and microstratigraphy are dealt with in Part III. These issues constitute the bulk of geoarchaeological research in North America and somewhat less so in Europe. In this part we present chapters that range from general issues and problems to environmentally and technique-specific ones. So, for example, Mandel and Bettis (Chapter 7) discuss the practical details of soils and landscapes, such as distinguishing soils from sediments, an often daunting problem to archaeologists and earth scientists alike; their discussion on soils and archaeological surveys provides practical information that is timely to field problems associated with modern cultural resource management projects. The chapters by Courty (Chapter 8) and Macphail and Cruise (Chapter 9) provide a somewhat different approach to many of the studies in the volume, with their emphasis on microstratigraphy and site formation dynamics and the methodological means to study them using soil micromorphology. They also furnish a valued European perspective because these types of studies are relatively uncommon in North America. Finally, Leigh (Chapter 10) examines the relationships among artifacts found in sandy contexts. These settings are widespread but not very well documented or understood, and the question of artifact mobilization is of critical importance here.

In Part IV, the shift is to studies involving more specific techniques. Stoltman (Chapter 11), for example, discusses the use and methodologies involved in ceramic petrography, including its application to issues of trade and its relationship to geochemical methodologies. Sherwood (Chapter 12) provides insights into the methodology, use, and interpretation of microartifact studies in archaeology. She shows how the method—one inspired from the earth sciences—can be used to interpret space in the archaeological context. Turning to geophysical methods, Kvamme (Chapter 13) demonstrates how modern remote sensing techniques are conducted. He illustrates the differences in suitability of different geophysical techniques at the same site and thus provides some valuable insights as to the choice of available techniques.

Part V includes three chapters dealing with geochemical methods. Rink (Chapter 14) explains the variety of techniques—including field and laboratory procedures—appropriate for dating artifacts and contexts that are beyond the range of radiocarbon. This information is particularly useful to those working on sites from the Old World, where archaeological records extend well beyond the Holocene. Chapter 15 by Nordt considers isotope analysis of soils, a subject that has proven to provide valuable paleoenvironmental data in Quaternary and geoarchaeological studies in both the New and Old Worlds. Chapter 16 by Herz reveals his extensive experience with the use and application of instrumental analyses in the sourcing of lithic materials.

Part VI concludes the volume with a prehistorian’s perspective of the earth scientist and archaeology. It utilizes Bar-Yosef’s background in earth science and
Preface

archaeology, as well as decades of collaboration with earth scientists and environmentalists. It provides a number of lessons learned from his experience in Near Eastern sites on how (geo)archaeological research has been carried out and how it might be better conducted in the future, regardless of locale.

In sum, our ultimate goal here is to provide pragmatic information that is translatable into better field and lab studies, as well as more and better interaction between archaeology and the earth sciences. We hope that practitioners from both disciplines will benefit from the perspectives and talents of our authors.

ACKNOWLEDGMENTS. We would like to gratefully acknowledge the editorial assistance of S. Weinberger for keeping together the infinite pieces of text, references, and correspondence. We also wish to thank those authors who submitted their manuscripts early and on their patience in waiting for this volume to appear.

References

Contents

I. BACKGROUND

Chapter 1

Quaternary Geoscience In Archaeology
Vance T. Holliday

1. Introduction ... 3
2. Definitions and Boundaries
 2.1. The Pliocene–Pleistocene Boundary .. 5
 2.2. The Pleistocene–Holocene Boundary .. 11
 2.3. Stratigraphic Subdivisions 12
3. Glacial–Interglacial Cycles 13
4. Causes of Quaternary Climate Cycles 16
5. Reconstructing Quaternary Environments: Data versus Models ... 20
6. Discussion and Conclusions 22
 Acknowledgments 27
7. References .. 28

Chapter 2

A Review of Site Formation Processes and Their Relevance to Geoarchaeology
Julie K. Stein

1. Introduction ... 37
2. History and Definitions of Formation Processes 38
 2.1. Definition of Site Formation Analysis 39
 2.2. The Unit of Site Formation Analysis 42

xiii
II. GEOMORPHOLOGICAL STUDIES

Chapter 3
Evaluating Causality of Landscape Change: Examples from Alluviation

Charles Frederick

1. Introduction 55
2. Basic Elements of Alluvial Stratigraphic Sequences 57
 2.1. The Stratigraphic Sequence 57
 2.2. Chronology 58
 2.3. Combination Proxies 61
3. Evidence Used to Link Causal Factors with Alluviation 64
 3.1. Climatic Forcing 65
 3.2. Anthropogenic Alluviation 65
 3.3. Tectonic Activity 67
 3.4. Eustasy 68
 3.5. Internal or Endogenic Factors, Geomorphic Thresholds, and Complex Responses 68
4. Investigating Causality in Alluviation: Some Examples 69
 4.1. Southern Illinois 69
 4.2. Southwestern Utah 70
 4.3. Colorado Plateau — Northeastern Arizona 71
 4.4. Comments 71
5. Summary 71
6. References 72

Chapter 4
Geoarchaeology in Alluvial Landscapes

C. Reid Ferring

1. Introduction 77
 1.1. Perspectives 78
 1.2. Time, Environments, and Fluvial Systems 78
2. Fluvial Environments, Geology, and Archaeological Implications 80
 2.1. General Factors 80
 2.2. Vegetation, Weathering, and Sediment Yield 81
 2.3. Channel Patterns and Stream Load 81
 2.4. Facies, Architecture, and Alluvial Geomorphology 84

References 77
Chapter 5

A Geomorphological Approach to Reconstructing Archaeological Settlement Patterns Based on Surficial Artifact Distribution: Replacing Humans on the Landscape

Lisa E. Wells

1. Introduction
2. Techniques and Methods
 2.1. Morphostratigraphy and Allostratigraphy
 2.2. Chronostratigraphy
 2.3. Integration of Geomorphology and Archaeological Survey Data: Questions of Scale
3. Case Studies
 3.1. Paleo landscapes of the Andean Foothills, Northern Coastal Peru: Reinterpreting Site-Based Surveys
 3.2. Paleo landscapes of the North Troodos Foothills, Cyprus: Toward an Interdisciplinary Framework
4. Conclusions: Replacing Humans on the Landscape
5. References

Chapter 6

Archaeoseismology: Shaking Out the History of Humans and Earthquakes

Jay Stratton Noller

1. Using Archaeology to Solve a Paleoseismic Problem
2. Approaches and Results of Archaeoseismology
 2.1. When Did the Earthquake Occur
 2.2. What Did the Earthquake Do?
 2.3. When’s the Next Earthquake?
3. Case Study: Offset of the Seal Cove Archaeological Site by the San Gregorio Fault
 3.1. Introduction ... 159
 3.2. Approach: Identify an Archaeological Site on a Fault 160
 3.3. Methods: Excavate and Date 161
 3.4. Results: Reading between the Fault Lines 162
 3.5. Implications of Results from Seal Cove 165
4. Closing ... 166
 Acknowledgments .. 166
5. References .. 167

III. SOILS, SEDIMENTS, AND MICROSTRATIGRAPHY

Chapter 7

Use and Analysis of Soils by Archaeologists and Geoscientists:
A North American Perspective 173

Rolfe D. Mandel and E. Arthur Bettis III

1. Introduction ... 173
2. Distinguishing Soil from Sediment 174
3. Soils and Archaeological Surveys 181
4. Soils and Site Evaluations 185
5. Soils and Site Excavations 190
6. Summary and Conclusions 194
 Acknowledgments .. 195
7. References .. 195

Chapter 8

Microfacies Analysis Assisting Archaeological Stratigraphy 205

Marie-Agnès Courty

1. Introduction ... 205
2. Basic Concepts and Definitions 207
 2.1. Anthropogenic Processes 207
 2.2. Archaeological Facies and Facies Patterns 208
3. Methodology .. 209
 3.1. Problems ... 209
 3.2. Research Strategy 211
 3.3. Sampling ... 212
 3.4. Analytical Procedure 213
 3.5. Synchronization with Other Techniques 215
Contents

4. Formation of Archaeological Strata 217
 4.1. General Principles ... 217
 4.2. Dynamics of the Soil Interface 220
 4.3. From the Soil Interface to the Archaeological Layer 220
 4.4. Stratigraphic Relationships and Three-Dimensional Reconstruction .. 229
5. Implications ... 232
 5.1. Implications for Archaeology 232
 5.2. Implications for Soil Science 232
 5.3. Implications for Paleoenvironmental Research and Paleoclimatology ... 234
6. Conclusion ... 235
7. References ... 236

Chapter 9

The Soil Micromorphologist as Team Player: A Multianalytical Approach to the Study of European Microstratigraphy 241

Richard Macphail and Jill Cruise

1. Introduction ... 241
2. Methods ... 243
 2.1. Getting the Sampling Right 243
 2.2. Multidisciplinary-Analytical Approach 245
 2.3. Numerical/Semi-numerical Data Gathering 245
3. Research Base .. 247
 3.1. Experimental Findings 247
4. Discussion ... 259
 4.1. A Final Cautionary Tale 263
5. Conclusions .. 263
 Acknowledgments .. 263
6. References .. 264

Chapter 10

Buried Artifacts in Sandy Soils: Techniques for Evaluating Pedoturbation versus Sedimentation 269

David S. Leigh

1. Introduction ... 269
 1.1. Equifinality of Pedoturbation and Sedimentation 271
2. Techniques ... 272
 2.1. Geomorphic Setting ... 272
 2.2. Sedimentary Structures, Stratigraphy, and Pedology 274
 2.3. Particle Size Analysis 277
Chapter 11

The Role of Petrography in the Study of Archaeological Ceramics 297

James B. Stoltman

1. Introduction 297
2. Basic Principles of Ceramic Petrography 299
 2.1. Qualitative Observations 301
 2.2. Quantitative Observations 305
3. Archaeological Problems Amenable to Petrographic Analysis 307
 3.1. Ceramic Classification 307
 3.2. Ceramic Engineering/Functional Considerations 309
 3.3. Ceramic Production 312
 3.4. Ceramic Exchange 319
4. Summary and Conclusions 322
5. References 323

Chapter 12

Microartifacts 327

Sarah C. Sherwood

1. Introduction 327
2. Defining Microartifacts 328
 2.1. Theoretical Framework 329
3. Methods 330
 3.1. Microartifact Identification 331
 3.2. Microartifact Recovery 332
 3.3. Size Distribution 333
 3.4. Microartifact Quantification 335
 3.5. Data Representation 337
4. Research Questions 338
 4.1. Site-Scale Research 338
 4.2. Landscape-Scale Research 344
5. Conclusions 346
Chapter 13

Current Practices in Archaeogeophysics: Magnetics, Resistivity, Conductivity, and Ground-Penetrating Radar

Kenneth L. Kvamme

1. Introduction
2. Geophysical Prospection Principles
3. Field Survey Methods
4. Geophysical Methods and Instruments
 4.1. Magnetic Methods
 4.2. Electrical Resistivity
 4.3. Electromagnetic Conductivity
 4.4. Ground-Penetrating Radar (GPR)
5. Computer Methods
6. Case Studies I: Field Methods and Results
 6.1. Whistling Elk Village, South Dakota
 6.2. Menoken Village, North Dakota
 6.3. Sluss Cabin, Kansas
 6.4. Breed's Hill, Massachusetts
7. Case Studies II: Advanced Geophysical Data Processing
 7.1. Navan Fort, Northern Ireland
 7.2. 3D Ranch, Kansas
 7.3. Whistling Elk Village, South Dakota
 7.4. Breed's Hill, Massachusetts
8. Conclusions
9. Acknowledgments
10. Glossary
11. References

V. GEOCHEMICAL METHODS

Chapter 14

W. Jack Rink

1. Introduction
 1.1. Scope and Current Issues
2. How to Choose the Right Dating Methods
3. Radiogenic Isotopes for Dating: Physical Basis 389
 3.1. Applications of Radiogenic Isotope Dating 391
 3.2. 4°Ar/39Ar Dating 392
 3.3. Closed-System Uranium-Series Dating 392
 3.4. Open-System Uranium-Series Dating 393
 3.5. Sampling Requirements for Uranium Series and 4°Ar/39Ar
 Dating ... 393
4. Radiation Exposure Dating 394
 4.1. Physical Basis of Fission-Track Dating 394
 4.2. Applications of Fission-Track Dating 395
 4.3. Sampling Requirements for Fission-Track Dating 395
 4.4. Physical Basis of ESR and Luminescence Dating 396
 4.5. Dosimetry Requirements 397
 4.6. Applications of ESR Dating 399
 4.7. Applications of Luminescence Dating 405
5. Dating Intercomparisons and General Problems with
 Interpretation of Dating Results 408
7. Summary .. 412
 Acknowledgments .. 412
8. References ... 412

Chapter 15

Stable Carbon and Oxygen Isotopes in Soils: Applications for
Archaeological Research .. 419

Lee C. Nordt

1. Introduction ... 419
2. Theory of Isotope Pedology 422
 2.1. Soil Genesis 422
 2.2. Stable C Isotopes of Soil Organic Matter 422
 2.3. Stable C and O Isotopes of Pedogenic Carbonate 423
3. Field Application of Stable C and O Isotopes in Soils 425
 3.1. Radiocarbon Dating and δ13C Depth Distributions 425
 3.2. Sources of Soil Carbon 428
4. Stable Isotope Laboratory Procedures 432
 4.1. Sample Collection 432
 4.2. Procedures for Soil Organic Matter 433
 4.3. Procedures for Pedogenic Carbonate 433
 4.4. Laboratory Comparisons 434
5. Geoarchaeology Case Studies 434
 5.1. Arid Southwest 434
 5.2. Southern Great Plains 437
 5.3. East Africa .. 440
 5.4. China .. 443
Contents

5.5. Summary of Case Studies .. 443
6. Conclusions .. 444
 Acknowledgments .. 444
7. References .. 445

Chapter 16

Sourcing Lithic Artifacts by Instrumental Analyses 449

Norman Herz

1. Introduction ... 450
2. Instrumental Analysis ... 451
3. Determining Provenance of Lithic Materials 453
 3.1. Obsidian ... 453
 3.2. Basalt ... 455
 3.2. Granitic and Other Felsic Igneous Rocks 455
 3.4. Serpentine and Related Rocks 456
 3.5. Marble .. 456
 3.6. Sandstone and Quartzite ... 456
 3.7. Chert and Other Siliceous Sediments 459
 3.8. Carbonates .. 461
 3.9. Amber ... 463
4. Summary and Conclusions .. 464
5. References .. 466

VI. A PREHISTORIAN’S PERSPECTIVE

Chapter 17

A Personal View of Earth Sciences’ Contributions to Archaeology 473

Ofer Bar-Yosef

1. Opening Remarks ... 473
2. Open-Air Sites and Their Environments—Are We Doing
 What Is Needed? .. 474
3. What Do We Expect to Learn from Site Formation Processes in
 Cave and Rockshelters? .. 476
4. Geochronology—Is It Simply a Game of Numbers?
 4.1. Radiocarbon Chronology ... 480
 4.2. The Preradiocarbon Techniques 481
5. Conclusions ... 484
6. References .. 485

Index ... 489