CLINICALLY RELEVANT RESISTANCE IN CANCER CHEMOTHERAPY
Cancer Treatment and Research
Steven T. Rosen, M.D., Series Editor

CLINICALLY RELEVANT RESISTANCE IN CANCER CHEMOTHERAPY

edited by

Borje Andersson, M.D., Ph.D.
MD Anderson Cancer Center
Houston, Texas, USA.

and

David Murray, Ph.D.
Cross Cancer Institute
Edmonton, Alberta, Canada.
TABLE OF CONTENTS

List of contributors ... xv

Preface .. xix

Chapter 1

Tumor physiology and resistance to chemotherapy: repopulation and drug penetration. Alison J. Davis and Ian F. Tannock

1. Introduction .. 1
2. Repopulation ... 2
 2.1 Cell kinetic factors affecting response to chemotherapy ... 2
 2.2 Repopulation and radiation therapy ... 3
 2.3 Repopulation and chemotherapy ... 5
 2.4 Models of repopulation between cycles of chemotherapy 7
 2.5 Potential methods for inhibition of repopulation following chemotherapy 9
3. Drug penetration through tissue ... 11
 3.1 Methods for study of drug penetration ... 11
 3.2 Penetration of tissue by anticancer drugs .. 13
 3.3 Factors that influence penetration of drugs through tissue 16
 3.4 Factors that might influence drug penetration ... 19

Chapter 2

The role of membrane transporters in cellular resistance to anticancer nucleoside drugs. Marilyn L. Clarke, John R. Mackey, Stephen A. Baldwin, James D. Young and Carol E. Cass

1. Introduction .. 27
2. Nucleoside transport processes ... 28
 2.1 Characterized ENT processes .. 28
 2.2 The es transporter (hENT1) .. 29
 2.3 The ei transporter (hENT2) ... 29
 2.4 The hENT3 transporter .. 31
 2.5 Characterized CNT processes .. 31
 2.6 The cit transporter (hCNT1) ... 32
 2.7 The cift transporter (hCNT2) .. 33
 2.8 The cib transporter (hCNT3) .. 34
 2.9 Concentrative nucleoside transport processes mediated by unknown proteins 34
3. The role of nucleoside transport in anticancer nucleoside activity and cellular resistance

3.1 Transport processes and cytotoxicity

3.2 Transporter-mediated mechanisms of drug resistance

3.2.1 Resistance to nucleoside analogs in cultured cancer cell lines

3.3 Clinical evidence for transport-related resistance to nucleoside analogs

3.3.1 Cytarabine

3.3.2 Fludarabine

3.3.3 Cladribine

3.3.4 Gemcitabine

3.3.5 Capecitabine

3.4 Measuring nucleoside drug uptake as a resistance marker

Chapter 3

MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents. Lei Deng, Shigaru Patebe, Yen-Chiu Lin-Lee, Toshihisa Ishikawa and M. Tien Kuo

1. Introduction

2. MDR

2.1 Biology of the MDR system

2.2 Regulation of MDR gene expression and P-glycoprotein activity

2.3 Clinical relevance of MDR1 in cancer chemotherapy

2.3.1 Significance of MDR1 expression in hematological neoplasms

2.3.2 Significance of MDR1 expression in solid tumors

2.3.3 Clinical trials using P-glycoprotein reversal agents

3. Multidrug resistance-associated protein (MRP)

3.1 The biology of MRP

3.2 Regulation of MRP function

3.3.1 Clinical relevance of MRP in cancer chemotherapy

Chapter 4

The glutathione system in alkylator resistance. David Hamilton, Nasser Fotouhi-Ardakani and Gerald Batist

1. Introduction

2. The glutathione system

2.1 Glutathione biosynthesis

2.2 γ-Glutamylcysteine synthetase and glutathione synthetase
Chapter 5
The role of signal transduction pathways in drug and radiation resistance. Steven Grant, Paul B. Fisher and Paul Dent
1. The mitogen activated protein kinase (MAPK) pathway 89
2. The C-Jun NH$_2$-terminal kinase (JNK)/stress activated protein kinase (SAPK) pathway 91
3. An overview of the role of the MAPK pathway in proliferation, differentiation and survival signaling 93
4. An overview of the role of the JNK pathway in proliferation, differentiation and apoptotic signaling 95
5. Potential direct roles for MAPK and JNK signaling in the control of the cell cycle and DNA repair following irradiation and drug exposure 96
6. MAPK signaling 97
7. JNK signaling 99

Chapter 6
Mechanisms of repair of interstrand crosslinks in DNA.
Randy J. Legerski and Christopher Richie
1. Introduction 109
2. Repair of ICLs in *E. coli* 110
3. Recombination in eucaryotes 112
4. Mediators of recombination 113
5. Processing of interstrand crosslinks in DNA 119
Chapter 7
DNA repair in resistance to bifunctional alkylating and platinating agents. David Murray

1. Introduction
2. DNA repair pathways
 2.1 The NER pathway
 2.2 The repair of interstrand crosslinks
 2.3 AGT
 2.4 Mismatch repair (MMR)
 2.5 The base excision repair (BER) pathway
3. Direct measurement of the repair of DNA lesions in genomic DNA following treatment of tumor cells with anticancer agents
 3.1 Cisplatin
 3.2 Melphalan
 3.3 Cyclophosphamide analogs
 3.4 Gene-specific repair
 3.5 Caveats
4. Surrogate assays where an exogenous DNA sequence is damaged and reactivated by a host (tumor) cell
 4.1 UV-irradiated virus or plasmid probes for NER
 4.2 Reactivation or repair of DNA probes treated with cisplatin
 4.3 HCR of DNA probes treated with other agents that induce ISCs
5. Levels of DNA repair gene transcripts or proteins in tumor cells
 5.1 Cisplatin
 5.2 Melphalan and mechlorethamine
 5.3 Cyclophosphamide and its analogs
 5.4 Chemotherapeutic nitrosoureas
 5.5 Caveats
6. Mismatch repair
7. AGT
8. DNA damage tolerance mechanisms in drug resistance
9. DNA repair inhibition
10. DNA repair genes for bone marrow cytoprotection

Chapter 8
Leukemic cell insensitivity to cyclophosphamide and other oxazaphosphorines mediated by aldehyde dehydrogenase(s).
Norman E. Sládek

1. Introduction
2. General mechanisms of cellular insensitivity to oxazaphosphorines

3. Specific involvement of aldehyde dehydrogenase in cellular insensitivity to oxazaphosphorines

Chapter 9
Mechanisms of resistance against cyclophosphamide and ifosfamide: can they be overcome without sacrificing selectivity?
Susan M. Ludeman and Michael P. Gamcsik

1. Introduction
2. The metabolism of CP and IF
 2.1 Aldehyde dehydrogenase (ALDH)
 2.2 C4-substituted CP/IF and analogs of AP/AIF
 2.3 Stereochemistry
 2.4 Analogs of PM and IPM
3. Glutathione and its associated enzymes
 3.1 Methods of circumventing glutathione-mediated resistance
4. DNA repair
5. PM and IPM
6. AGT and acrolein

Chapter 10
Cellular mechanisms of cyclophosphamide resistance: model studies in human medulloblastoma cell lines. Henry S. Friedman, Stewart P. Johnson and O. Michael Colvin

1. Cyclophosphamide therapy of medulloblastoma
2. Cyclophosphamide metabolism
3. Medulloblastoma cell lines as a model for this tumor
4. Mechanisms of cyclophosphamide resistance
5. Cyclophosphamide resistance in human medulloblastoma cell lines
 5.1 ALDH
 5.2 GSH and GST
 5.3 Repair of 4HC-induced DNA interstrand crosslinks
6. Quantitation of DNA interstrand crosslink repair

Chapter 11
Model studies of cyclophosphamide resistance in human myeloid leukemia. Borje S. Andersson and David Murray

1. Resistance to cyclophosphamide analogs in cancer treatment
2. The role of ALDH in resistance to oxazaphosphorines
3. The role of non-ALDH mechanisms in resistance to oxazaphosphorines 213
4. A human myeloid leukemia model for oxazaphosphorine resistance 215
5. Phenotypic/biochemical characterization of the B5-1803 CML cell line 216
 5.1 Biological characteristics; clonogenic survival 216
 5.2 Stability of the B5-1803 phenotype 216
 5.3 Cross-resistance to other DNA-damaging agents 217
 5.4 Aldehyde dehydrogenase 218
 5.5 GST protein activity and GSH levels 220
 5.6 DNA damage and repair 221
 5.7 Cell cycle checkpoint activation 222
6. Genetic characterization of B5-1803 cells 223
 6.1 Cytogenetics 223
 6.2 General approaches to the assessment of altered gene expression in drug-resistant cells 225
 6.3 Atlas 7742-1: human cancer cDNA arrays 225
 6.4 Atlas 7850-1: human 1.2 I cDNA arrays 226
 6.5 Differential display of mRNA 228
 6.6 Caveats 228
7. Apoptosis 229
8. Clinically-relevant low-degree resistance to oxazaphosphorines in CML 231

Chapter 12
Mechanisms of drug resistance in AML. Michael Andreeff and Marina Konopleva
1. Introduction 237
2. Cytokines and cytokinetic resistance 238
 2.1 Priming effects of HGF in AML: cytokinetic resistance 240
 2.2 Angiogenic Growth Factors in AML 241
 2.3 Chemokines in AML 242
3. Leukemic/stromal cell interactions in AML 243
4. Stem cells in AML 243
 4.1 NOD/scid model: a novel functional stem cell phenotype 243
5. Surface antigens as therapeutic targets in AML 243
 5.1 Antibody-targeted therapy for AML 245
6. Multidrug resistance in AML 246
 6.1 MDR1 246
 6.2 MDR modulators 249
7. Apoptosis--250
 7.1 Role of apoptosis regulators in AML---------------------------251
 7.2 Modulation of apoptosis as a strategy in cancer treatment ---254

Chapter 13
Biochemical and molecular mechanisms of cisplatin resistance.
Zahid H. Siddik
1. Introduction--263
2. DNA as a target of cisplatin action---------------------------264
3. Mechanisms of cisplatin resistance------------------------267
 3.1 Biochemical mechanisms of resistance-----------------269
 3.1.1 Drug accumulation -------------------------269
 3.1.2 Glutathione and thiol-related proteins -------271
 3.1.3 DNA damage repair and tolerance -----------273
 3.2 Molecular mechanisms of resistance--------------------275
 3.2.1 Tumor suppressor p53 ------------------------275
 3.2.2 Bcl-2 family -------------------------------276
 3.2.3 Other molecular factors---------------------277

Chapter 14
Modification of radiosensitivity following chemotherapy exposure: potential implications for combined-modality therapy.
Richard A. Britten
1. General overview of chemoradiation treatment-----------285
2. Impact of the development of chemoresistance on cellular radiosensitivity-----------------------------286
 2.1 General rationale for combined modality therapy at the tumor/cellular level----------------------286
 2.2 Pre-clinical studies on independent cell killing by radiation and chemotherapeutic agents---------286
 2.3 Concomitant chemotherapy and its impact upon subsequent radiation response----------------------288
 2.4 Neo-adjuvant chemotherapy and its impact upon subsequent radiation response--------------------289
 2.5 Chemoresistant human tumors exhibit a modified radiation response-----------------------------290
3. The way forward: individualized molecular prescription and scheduling?-----------------------------295
Chapter 15

Clinical pharmacology of melphalan and its implications for clinical resistance to anticancer agents. Roy B. Jones

1. Introduction

2. Pharmacokinetics and extracellular pharmacology
 2.1 Metabolism and Elimination
 2.1.1 Oral administration
 2.1.1.1 Absorption
 2.1.1.2 Pharmacokinetics
 2.1.2 Intravenous administration

3. Pharmacodynamics and cellular pharmacology
 3.1 DNA alkylation
 3.2 Glutathione (GSH) binding

4. Clinical use
 4.1 Antitumor activity
 4.2 Toxicities

5. Antitumor resistance mechanisms
 5.1 Pharmacokinetic resistance factors
 5.2 Tumor effects
 5.3 Cell membrane effects
 5.4 Intracellular effects
 5.4.1 Glutathione/glutathione-S-transferase modulation
 5.4.2 DNA polymerase and topoisomerase
 5.4.3 DNA repair enzymes
 5.4.4 Apoptosis

6. Tumor resistance and multi-agent treatment

7. Melphalan and future high-dose cancer therapy strategies

Chapter 16

Pharmacological considerations of primary alkylators.

Jeannine S. McCune and John T. Slattery

1. Introduction

2. Busulfan
 2.1 Pharmacokinetic characteristics of busulfan
 2.2 Pharmacodynamics of busulfan
 2.2.1 Busulfan exposure and disease relapse in the BU/CY preparative regimens for HSCT
 2.2.2 Busulfan exposure and engraftment in the BU/CY preparative regimens
 2.2.3 Busulfan exposure and toxicity in the BU/CY preparative regimen of HSCT
2.3 Conclusions on adaptive dosing of busulfan

3. Cyclophosphamide
 3.1 Pharmacokinetics of cyclophosphamide
 3.2 Pharmacodynamics of cyclophosphamide
 3.2.1 Cyclophosphamide exposure and response
 3.2.2 Cyclophosphamide exposure and toxicity in patients receiving the CPB or CTCb preparative regimen
 3.2.3 Cyclophosphamide exposure and toxicity in patients receiving the cyclophosphamide/total body irradiation (CY/TBI) preparative regimen
 3.3 Conclusions on adaptive dosing of cyclophosphamide

4. Ifosfamide

5. Carmustine

6. Thiotepa

7. Carboplatin and cisplatin

Chapter 17
Genomic approaches to clinical drug resistance.
Sambasivarao Damara, Michael Sawyer and Brent Zanke

1. Introduction

2. Gene expression profiling
 2.1 Moving toward customized anticancer drug therapy and rational drug design
 2.2 DNA microarray gene expression profiling
 2.3 The clinical classification of human tumors by gene expression profiling
 2.4 Bioinformatic analysis of expression data
 2.5 The use of DNA gene expression profiling using microarrays in the evaluation of clinical anticancer drug sensitivity
 2.6 The future of tumor gene expression profiling in anticancer drug sensitivity testing

3. Genetic polymorphisms
 3.1 Single nucleotide polymorphism
 3.2 Repetitive genetic elements are naturally polymorphic
 3.3 Polymorphism and high density genetic maps
 3.4 Web-based SNP resources
 3.5 Genotyping methodologies
 3.6 SNPs and clinical drug resistance
 3.7 Cytochrome P450 enzymes and drug metabolism
 3.8 Repetitive elements and drug metabolism

4. Metabonomics: Clinical genomics and drug metabolism
CONTRIBUTORS

Borje S Andersson, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Michael Andreeff, Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Stephen A Baldwin, School of Biochemistry and Molecular Biology, University of Leeds, Leeds, United Kingdom.

Gerald Batist, The Center for Translational Research in Cancer, McGill University and Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital, Montréal, Québec, Canada.

Richard A Britten, Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia, USA.

Carol E Cass, Departments of Oncology and Biochemistry, University of Alberta, and Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.

Marilyn L Clarke, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.

O Michael Colvin, Department of Medicine, Duke University Comprehensive Cancer Center, Duke University Medical Center, Durham, North Carolina, USA.

Sambasivarao Damaraju, Polyomx Program and Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.

Alison J Davis, Department of Medical Oncology and Hematology, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada.

Lei Deng, Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Paul Dent, Department of Pharmacology and Toxicology and Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.

Paul B Fisher, Department of Pathology and Urology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Nasser Fotouhi-Ardakani, Department of Experimental Medicine, McGill University and Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital, Montréal, Québec, Canada.

Henry S Friedman, Department of Neuro-Oncology, Duke University Comprehensive Cancer Center, Duke University Medical Center, Durham, North Carolina, USA.

Michael P Gamcsik, Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.

Steven Grant, Department of Pharmacology and Toxicology and Department of Hematology/Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.

David Hamilton, Department of Pharmacology and Therapeutics, McGill University and Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital, Montréal, Québec, Canada.

Toshihisa Ishikawa, Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.

Stewart P Johnson, Departments of Neuro-Oncology and Neurosurgery, Duke University Comprehensive Cancer Center, Duke University Medical Center, Durham, North Carolina, USA.

Roy B Jones, Bone Marrow Transplant Program, University of Colorado Health Science Center, Denver, Colorado, USA.

Marina Konopleva, Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

M Tien Kuo, Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Randy Legerski, Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Yen-Chiu Lin-Lee, Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Susan M Ludeman, Duke Comprehensive Cancer Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.

John R Mackey, Departments of Medicine and Experimental Oncology, Cross Cancer Institute, and Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
Jeannine S McCune, Department of Clinical Research, Fred Hutchinson Cancer Research Center, and Department of Pharmacy, University of Washington, Seattle, Washington, USA.

David Murray, Department of Oncology, University of Alberta, and Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.

Christopher Richie, Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Michael Sawyer, Polyomx Program and Department of Medicine, Cross Cancer Institute, Edmonton, Alberta, Canada.

Zahid H Siddik, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Norman E Sladek, Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.

John T Slattery, Department of Clinical Research, Fred Hutchinson Cancer Research Center, and Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.

Ian F Tannock, Department of Medical Oncology and Hematology, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada.

Shigaru Tatebe, Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

James D Young, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.

Brent Zanke, Polyomx Program and Departments of Medicine and Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.
Over the last several decades, the introduction of new chemotherapeutic drugs and drug combinations has resulted in increased long-term remission rates in several important tumor types. These include childhood leukemia, adult leukemias and lymphomas, as well as testicular and trophoblastic tumors. The addition of high-dose chemotherapy with growth factor and hemopoietic stem cell support has increased clinical remission rates even further. For the majority of patients with some of the more common malignancies, however, palliation (rather than cure) is still the most realistic goal of chemotherapy for metastatic disease. The failure of chemotherapy to cure metastatic cancer is commonly referred to among clinicians as "drug resistance". This phenomenon can, however, often be viewed as the survival of malignant cells that resulted from a failure to deliver an effective drug dose to the (cellular) target because of any one of or combination of a multitude of individual factors. Clinically, this treatment failure is often viewed as the rapid occurrence of resistance at the single cell level. However, in experimental systems, stable drug resistance is usually relatively slow to emerge. Clinical "drug resistance" may be caused by some combination of: [a] resistance of individual cells to the delivered treatment; [b] unfavorable drug-host interactions: tumor cells may be exposed to a limited drug concentration because of a high rate of metabolic drug degradation and/or altered regional blood supply; in this case, individual tumor cells may still be sensitive to the used chemotherapy; and [c] unfavorable malignant cell-host interactions that result in the survival and proliferation of the neoplastic cells.

We as a scientific community have come to realize that inter-individual genetic differences are of major importance for metabolic drug handling, and that this may be of the utmost importance for clinical treatment outcome. Furthermore, as our knowledge of the molecular mechanisms that operate to confer drug resistance at the single-cell level increases, we are developing the ability to create probes that can be used to study malignant-cell drug resistance at the clinical level, in addition to studying the clinical pharmacology of anticancer drugs both at the patient level and (sometimes) at the tumor cell level. An integration of clinical and experimental investigations will improve the understanding of clinically relevant drug resistance, and ultimately it should also assist us in improving the treatment of human cancer.
Recently, rapid technological advances have enabled high-throughput studies of genetic polymorphisms and cellular proteomes. This has opened up entirely new approaches not only to the study of drug resistance in model systems but also to the individualization of chemotherapy in order to decrease clinical toxicity and optimize treatment results. This volume reviews clinically relevant aspects of both cellular/experimental resistance to commonly used anticancer agents and the importance of the pharmacokinetics of such agents, as well as some of the developments that can be expected over the next 5-10 years.

Finally, we would like to acknowledge the major contributions from all of our co-authors, without whose hard work and patience we would not have been able to complete this volume. Our administrative assistants, Sandy Deib and Muriel Giese, are to be complimented for their never-ending tolerance and for their administrative and technical support in all aspects of the preparation of these chapters.

Borje Andersson
David Murray