THE SODIUM-HYDROGEN EXCHANGER

From Molecule to its Role in Disease
THE SODIUM-HYDROGEN EXCHANGER

From Molecule to its Role in Disease

edited by

Morris Karmazyn
University of Western Ontario
London, Ontario, Canada

Metin Avkiran
King's College London
United Kingdom

Larry Fliegel
University of Alberta
Edmonton, Alberta, Canada

SPRINGER SCIENCE+BUSINESS MEDIA, LLC
Table of Contents

Chapter 1

REGULATION OF INTRACELLULAR pH IN MAMMALIAN CELLS

1. Introduction ... 1
2. Intracellular Compartmentalization Of pH 2
3. Cytoplasmic pH .. 2
4. Intracellular Buffers .. 3
5. Measurement Of pHi During Acid-Base Loading 5
6. Transport Systems That Regulate pHi, 5
 6.1 NHE ... 7
 6.2 NBC ... 8
 6.3 NDCBE ... 9
 6.4 MCT .. 9
 6.5 H^+-ATPase ... 9
 6.6 AE And CHE... 10
 6.7 Other Acid Extruders And Loaders................................. 10

Chapter 2

MOLECULAR AND FUNCTIONAL DIVERSITY OF MAMMALIAN Na^+/H^+ EXCHANGERS

1. Introduction ... 17
2. Genetic Heterogeneity ... 18
 2.1 Structure And Function Relations 20
 2.2 Tissue Expression, Subcellular Distribution, And Physiological Roles ... 22
3. Conclusion .. 26

Chapter 3

TWO FUNCTIONAL REGULATORY FACTORS OF THE Na^+/H^+ EXCHANGERS

THE PROTON AND CHP
1. Introduction .. 35
2. The Proton ... 36
 2.1 The H^+-Modifier Site .. 36
 2.2 Critical Regions Involved In pH-Sensing 39
3. CHP ... 41
Chapter 4

REGULATION OF EXPRESSION OF THE Na⁺/H⁺ EXCHANGER IN THE MYOCARDIUM AND OTHER TISSUES

1. Introduction ... 51
 1.1 The Importance Of pH Regulation And Na⁺/H⁺ Exchangers 51
 1.2 Other Physiological Roles Of Na⁺/H⁺ Exchangers 53
 1.3 The Na⁺/H⁺ Exchanger And The Myocardium....... 54
 1.4 The Na⁺/H⁺ Exchanger In Myocardial Diseases 54

2. Na⁺/H⁺ Exchanger Expression Varies In Response To The Environment .. 55

3. Transcriptional Regulation Of The Na⁺/H⁺ Exchanger Gene ... 57
 3.1 The Human, Rabbit And Porcine NHE1 Promotors .. 57
 3.2 Regulation Of The Mouse NHE1 Promoter 58
 3.2.1 Proximal Regions Of The Mouse NHE1 Promoter .. 58
 3.2.2 Distal Regions Of The Mouse NHE1 Promoter ... 59
 3.2 Regulation Of The NHE1 Promoter In The Myocardium ... 60

4. Conclusion ... 61

Chapter 5

Na-H EXCHANGE FUNCTION IN COLONIC EPITHELIAL CELLS

1. Introduction ... 71

2. Apical Membrane NHEs .. 72
 2.1 Cl-dependent NHE In Crypt Cells ... 77

3. Basolateral Membrane NHEs ... 83

Chapter 6

NhaA Na⁺/H⁺ ANTIPORTER. STRUCTURE, MECHANISM AND FUNCTION IN HOMESTASIS OF Na⁺ AND pH

1. Introduction ... 91
Chapter 7

THE USE OF TRANSGENIC ANIMAL MODELS TO STUDY Na⁺/H⁺ EXCHANGE

1. Introduction... 109

2. Transgenic Studies On The NHE1 Isoform Of The Na⁺/H⁺ Exchanger ... 110

2.1 Studies On NHE1 Deficient Mice.............................. 110
2.2 Studies Overexpressing The NHE1 Isoform Of The Na⁺/H⁺ Exchanger .. 113
2.3 Transgenic Approaches To Study NHE1 Regulation 113

3. Transgenic Studies On The NHE2 And NHE3 Isoforms Of The Na⁺/H⁺ Exchanger... 115
 3.1 Gastrointestinal Function .. 115
 3.2 Renal Tubular Function ... 116

4. Pitfalls In Transgenic Studies .. 117

5. Conclusion ... 118

Chapter 8

pH-REGULATORY MECHANISMS IN THE MAMMALIAN OOCYTE AND EARLY EMBRYO

1. Introduction .. 123
2. Oocyte And Embryo Development .. 123
3. Expression Of Na⁺/H⁺ Exchanger (NHE) And Anion Exchanger (AE) Isoforms In Mammalian PI Embryos 124
4. Activity Of pHᵢ-Regulatory Mechanism In PI Embryos 125
 4.1 Na⁺/H⁺ Exchanger Activity And Recovery From Acidosis In PI Embryos .. 125
 4.2 HCO₃⁻/Cl⁻ Exchanger Activity And Recovery from Alkalosis In PI Embryos .. 128
5. pHᵢ Regulatory Mechanisms During Meiosis And Fertilization .. 129
 5.1 Changes in pHᵢ At Fertilization .. 129
 5.2 pHᵢ Regulation In The Egg At Fertilization In The Mammal ... 130
 5.3 pHᵢ Regulation During Meiosis... 130
 5.4 Regulation Of HCO₃⁻/Cl⁻ Exchanger Activity During Meiosis ... 132
6. Conclusion .. 134

Chapter 9

Na⁺/H⁺ EXCHANGER ACTIVATION BY MYOCARDIAL STRETCH

1. Introduction .. 137
2. Mechanism Of Stretch-Induced Increase Of The NHE Activity ... 138
3. Mechanical Counterpart Of Stretch-Induced Increase Of The NHE Activity .. 142
Chapter 10

THE PARADOXICAL ROLE OF Na⁺/H⁺ EXCHANGER IN THE DIABETIC HEART

1. Introduction .. 149
2. Depressed Na⁺/H⁺ Exchanger (NHE) Activity In Insulin-Deficient (TYPE I) Diabetes And Associated Increased Resistance Of Diabetic Hearts To Ischemia And Reperfusion Injury .. 149
3. NHE In Non-Insulin-Dependent (TYPE 2) Diabetes........... 153
4. Conclusion ... 155

Chapter 11

ROLE OF Na-H EXCHANGER IN VASCULAR REMODELLING IN DIABETES

1. Introduction .. 159
2. Mechanism And Processes Controlling The Activity Of NHE-1 ... 161
3. Cellular Physiology Of The Activation Of NHE 162
4. Ion Transport And Cytoskeleton In The Cellular Function Of NHE 1 ... 164
 4.1 Vascular Changes In Diabetes... 165
 4.2 Future Prospects .. 168

Chapter 12

THE POTENTIAL ROLE OF THE Na⁺/H⁺ EXCHANGER IN ISCHEMIA/REPERFUSION INJURY OF THE CENTRAL NERVOUS SYSTEM

1. Introduction .. 177
2. Na⁺/H⁺ Exchange, Stroke And Potential Adverse Consequences ... 178
 2.1 Acidosis And Ischemic Brain Injury 179
 2.2 Inhibition Of NHEs During Cerebral Ischemia/Reperfusion ... 181
3. Conclusion ... 185
Chapter 13

RECEPTOR-MEDIATED REGULATION OF THE CARDIAC SARCOLEMMAL Na+/H+ EXCHANGER

1. Introduction ... 191
2. Regulation Of Cardiac Sarcolemmal NHE Activity
 By Receptor Activation .. 193
 2.1 Adrenergic Receptors ... 193
 2.2 Angiotensin II Receptors ... 194
 2.3 Endothelin Receptors ... 195
 2.4 Thrombin Receptors .. 196
 2.5 Adenosine Receptors .. 197
 2.6 Muscarinic Receptors .. 197
 2.7 “Orphan” Receptors ... 197
3. Physiological Importance Of Receptor-Mediated Regulation Of The Sarcolemmal NHE 198
4. Pathophysiological Importance Of Receptor-Mediated Regulation Of The Sarcolemmal NHE 200
 4.1 Receptor-Mediated Regulation Of NHE In Myocardial Ischemia And Reperfusion 200
 4.2 Receptor-Mediated Regulation Of NHE In Myocardial Hypertrophy .. 201
5. Conclusion ... 202

Chapter 14

ROLE OF NHE-1 IN CARDIAC HYPERTROPHY AND HEART FAILURE

1. Introduction... 211
2. Rationale For NHE-1 Involvement In Cardiac Hypertrophy And Heart Failure ... 212
3. Experimental Evidence For NHE-1 Involvement In Hypertrophy And Heart Failure 213
 3.1 Evidence In Cardiac Myocytes And Isolated Tissues ... 213
 3.2 Evidence In Animal Heart Failure Models ... 215
 3.2.1 Postinfarction Heart Failure ... 215
 3.2.2 Right Ventricular Hypertrophy And Heart Failure ... 216
 3.2.3 Genetic Animal Models Of Heart Failure ... 216
4. Potential Mechanisms For NHE-1 Involvement In Hypertrophy And Heart Failure 216
Chapter 15

MECHANISMS UNDERLYING NHE-1 INVOLVEMENT IN MYOCARDIAL ISCHEMIC AND REPERFUSION INJURY

1. Introduction .. 221
2. Cellular Localization Of NHE-1 In The Heart 222
3. Regulation Of NHE-1 Activity In The Cardiac Cell 222
 3.2 Activation Of NHE-1 By Cardioactive Paracrine And Autocrine Factors 223
 3.3 Role Of Phosphorylation ... 223
 3.4 Phosphorylation-Independent Regulation 224
 3.5 Role Of ATP ... 224
 3.6 Activation By G Proteins ... 225
4. Mechanisms Underlying NHE Involvement In Myocardial Ischemic And Reperfusion Injury 225
 4.1 Myocardial Protection By NHE Inhibitors 228
 4.2 Does NHE-1 Mediated Injury Occur During Ischemia Or Reperfusion, Or Both? 228
5. Potent Antiarrhythmic Effect Of NHE-1 Inhibition 230
6. Other Potential Mechanisms Mediating Cardioprotective Effects Of NHE-1 Inhibitors 232
7. Conclusion ... 232

Chapter 16

CHEMISTRY OF NHE INHIBITORS

1. Introduction .. 239
 1.1 The Importance Of The Guanidine Moiety 239
2. Chemical Classes Of NHE Inhibitors 242
 2.1 Aroylguanidines ... 242
 2.2 Heteroaroylguanidines .. 243
 2.2.1 6-Membered Heteroaroylguanidines 243
 2.2.2 5-Membered Heteroaroylguanidines 244
 2.3 Spacer-Stretched Aroylguandines 246
 2.4 Non-Acyl Guanidines .. 248
 2.5 Non-Guanidine NHE Inhibitors 249
Chapter 17

DEVELOPMENT OF NHE INHIBITORS FOR CARDIOVASCULAR THERAPEUTICS

1. Introduction .. 255
2. Clinical Trials Performed With NHE-l Inhibitors In Patients Exposed To Myocardial Ischemia/Reperfusion 256
 2.1 The GUARDIAN Trial ... 257
 2.2 The ESCAMI Trial .. 257
 2.3 The EXPEDITION Trial .. 258
3. Apparent Contradiction Between Preclinical Data Of NHE-1 Inhibitors And The Outcome Of Clinical Trials. 258
4. Preclinical Evidence For A Central Role Of NHE-1 In Post MI Remodeling And Heart Failure 261
5. Conclusions And Future Directions 262

Chapter 18

CARDIAC PROTECTION BY NHE INHIBITORS

1. Introduction .. 265
2. NHE-l Inhibition And Cardioprotection 266
 2.1 Mechanisms Responsible For Cardioprotection 266
 2.2 NHE-l Inhibition And Infarct Size Reduction 268
 2.3 Comparative Effects of NHE-1 Inhibition And Ischemic Preconditioning To Reduce Infarct Size 270
 2.4 Apoptosis And NHE-1 Inhibition 273
 2.4 Antifibrillatory And antiarrhythmic Effects Of NHE-1Inhibitors .. 274
3. Clinical Trials With NHE-l Inhibitors: Infarct Size Reduction ... 274

Chapter 19

NHE-1 INHIBITORS: POTENTIAL APPLICATION IN CARDIAC SURGERY

1. Introduction .. 279
2. Myocardial Dysfunction After Cardiac Surgery 280
Chapter 20
NHE-1 INHIBITION: A POTENTIAL NEW TREATMENT FOR RESUSCITATION FROM CARDIAC ARREST

1. Introduction ... 291
2. Potential Role Of NHE-1 During Cardiac Arrest 292
3. Myocardial Effects Of Ventricular Fibrillation 294
4. NHE-1 Inhibitors .. 295
5. Myocardial Abnormalities During VF And Effects Of NHE-1 Inhibition ... 297
 5.1 Ischemic Contracture And Closed-Chest Resuscitation ... 297
 5.2 Myocardial Perfusion And Coronary Vascular Resistance .. 298
 5.3 Timing For Electrical Defibrillation 299
 5.4 Ventricular Arrhythmias After Return Of Spontaneous Circulation ... 300
 5.5 Post-Resuscitation Myocardial Dysfunction 301
6. Clinical Implications .. 302

Index .. 309
LIST OF FIGURES

Chapter 1

Figure 1. Influence of pH on buffering power 4
Figure 2. NH₄Cl and NaAc prepulsing ... 6
Figure 3. Transporters that regulate mammalian intracellular pH 6
Figure 4. Effect of pHᵢ on H⁺ extrusion via NHE in ventricular cells 8

Chapter 2

Figure 1. Structural organization and regulation of the Na⁺/H⁺ exchanger NHE-1 Isoform 20

Chapter 3

Figure 1. Physiological role of the pH-sensor .. 36
Figure 2. The pHᵢ profile of ²²Na⁺ efflux from NHE1 transfectants 38
Figure 3. Schematic representation of mutation-sensitive regions involved in pHᵢ sensing 40
Figure 4. Structure of CHP and subcellular localization of GFP-tagged CHP 42
Figure 5. Effect of serum depletion on cell viability 44
Figure 6. Hypothesis for the role of CHP2 in malignant cells 45

Chapter 4

Figure 1. Schematic model of the NHE1 isoform of the mammalian Na⁺/H⁺ exchanger 52
Figure 2. Schematic model of the initial 1100 bp of the mouse NHE1 promoter 61

Chapter 5

Figure 1. Cl-dependent NHE activity in crypt cells 79
Figure 2. Na-dependent pH recovery to an acid load in the presence and absence of Cl in untransfected and Cl-NHE cDNA transfected PS120 cells 82
Figure 3. Effect of intravesicular [H] on Na kinetics in BLMV mediated by NHE and by NBC 86

Chapter 6

Figure 1. The two modes of Na+ cycle in enterobacteria 94
Figure 2. Two D model of NhaA ... 95
Figure 3. Intermolecular cross-linking between NhaA monomers ... 96
Figure 4. Intramolecular cross-linking of NhaA 98
Figure 5. Schematic presentation of helix packing of NhaA at the cytoplasmic face of the membrane 103

Chapter 8

Figure 1. Mammalian oocyte and preimplantation embryo development ... 124
Figure 2. Recoveries from acid loads induced by NH4Cl pulse in CFI mouse and hamster 2-cell embryo 126
Figure 3. Activity of HCO3-/Cl- exchanger in mouse embryos ... 127
Figure 4. Set-points of Na+/H+ and HCO3-/Cl- exchangers in 2-cell mouse embryos 127
Figure 5. Na+/H+ and HCO3-/Cl- exchanger activities in unfertilized eggs vs. 1-cell embryo 131
Figure 6. Activation of Na+/H+ exchanger in hamster eggs and HCO3-/Cl- exchanger in mouse (CFI strain) eggs following egg activation 131
Figure 7. Inactivation of HCO3-/Cl- exchanger during meiosis in mouse oocytes .. 132
Figure 8. Reactivation of HCO3-/Cl- exchanger after egg activation in the mouse ... 133

Chapter 9

Figure 1. Schematic representation of isolated papillary muscle set-up .. 138
Figure 2. Stretch-induce pH\textsubscript{i}-changes .. 139
Figure 3. Stretch-induced Na+ changes .. 139
Figure 4. Dissociation of stretch-induced Na+ from pH\textsubscript{i} changes .. 140
Figure 5. Effect of ET receptor blockers on stretch-induced Na+ changes .. 141
Figure 6. Ang II increases outward I\textsubscript{NCX} through AT\textsubscript{1} receptors in isolated myocytes .. 141
Figure 7. Time-course of intracellular Ca2+ changes after stretch .. 142
Figure 8. Blockade of ETA receptors abolishes the changes in CaT induced by stretch .. 143
Figure 9. Inhibition of the reverse mode of NCX by KBR 7943 completely eliminates the slow increase in force that myocardial stretch .. 143
Figure 10. Effects of buffers on developed force .. 144
Figure 11. Increases in intracellular Ca2+ in bicarbonate- or HEPES-buffered medium .. 145
Figure 12. Effects of buffers on Na+ and developed force .. 145
Figure 13. Effect of a reverse mode NCX inhibitor on developed force .. 146
Figure 14. Negative lusitropic effect of stretch under HEPES buffer .. 146

Chapter 10

Figure 1. pH\textsubscript{i} recovery on reperfusion occurs more slowly in diabetic hearts .. 150
Figure 2. NHE inhibition markedly attenuates the ischemia-induced increase in Na+ .. 152
Figure 3. NHE activity in NIDD GK rat hearts .. 154

Chapter 11

Figure 1. The natural history and progressive nature of the development of the “complications” of Type 2 diabetes .. 160
Figure 2. Proposed model of “constitutive” and “regulated” Na/H exchange activity in vascular smooth muscle cells .. 163
Figure 3. Inhibition of vascular smooth muscle cell proteoglycan biosynthesis by Na/H exchange inhibitors .. 168

Chapter 12

Figure 1. Effects of hyperglycemia on ischemia-evoked release of FFAs into cerebral cortical superfusates .. 180
Figure 2. The effect of EIPA on ischemia-evoked FFA release into rat cerebral cortical superfusates .. 182
Figure 3. The effect of SM-20220 on ischemia-evoked FFA release into rat cerebral cortical superfusates .. 183
Figure 4. The effect of KB-R7943 on ischemia-evoked FFA release into rat cerebral cortical superfusates .. 184

Chapter 14

Figure 1. Simplified schematic showing the potential role of NHE-1 in mediating the hypertrophic effects of autocrine/paracrine receptor activation in the cardiac cell .. 213

Chapter 15

Figure 1. Schematic illustrating the role of NHE-1 in mediating myocardial ischemic and reperfusion injury .. 226
Figure 2. Dose-dependent cardioprotective effects of cariporide .. 229

Chapter 16

Figure 1. The chemical structure of amiloride .. 239
Figure 2. Structures of the tri-hydrated Na⁺ ion and the native or R-substituted guanidinium ion .. 240
Figure 3. The basic benzoylguanidine structure and two NHE inhibitors derived from this structure .. 241
Chapter 17

Figure 1. Time window for retardation of myocardial injury by NHE-1 Inhibitors

Chapter 18

Figure 1. Effect of BIIB-513 on Na\(^+\) and function in ischemia and reperfusion
Figure 2. Dose-dependent effect of EMD-85131 on infarct size
Figure 3. Dose-dependent effect of EMD-85131 on infarct size
Figure 4. Effects of NHE-1 inhibition and IPC on infarct size following 90 minutes of LAD occlusion. ... 273

Chapter 20

Figure 1. Intracellular ion regulation .. 292
Figure 2. Effect of ventricular fibrillation on intracellular Ca.. 295
Figure 3. Pathogenic model relating fibrillation, ischemia and NHE-1 .. 296
Figure 4. Left ventricular pressure during VF in isolated perfused rat hearts .. 298
Figure 5. Effect of cariporide on fibrillation-induced changes in coronary vascular resistance 299
Figure 6. Ventricular ectopic activity during post-resuscitation .. 301
LIST OF TABLES

Chapter 2
Table 1. Diversity of Mammalian Na\(^+\)/H\(^+\) Exchangers.......................... 18
Table 2. Similarity of Mammalian Na\(^+\)/H\(^+\) Exchangers.......................... 19

Chapter 5
Table 1. Comparison of NHE Activity in Colonic AMV
to Expressed NHE-2 and NHE-3 Isoforms 73
Table 2. Effects of Aldosterone on NHE Isoform Function.................... 74
Table 3. Distribution and Kinetics of Colonic NHEs 80
List of Contributors
(email address provided for corresponding authors)

Metin Avkiran
Centre for Cardiovascular Biology and Medicine
King’s College London
The Rayne Institute
St Thomas’ Hospital
London SE1 7EH
United Kingdom
metin.avkiran@kcl.ac.uk

Henry J Binder
Departments of Internal Medicine
Cellular and Molecular Physiology and Surgery
Yale University
New Haven, Connecticut 06520
USA
henry.binder@yale.edu

Iyad M Ayoub
Department of Medicine
Finch University of Health Sciences
The Chicago Medical School
North Chicago VA Medical Center
3001 Green Bay Road
North Chicago, Illinois 60064
USA

María C Camilión de Hurtado
Centro de Investigaciones Cardiovasculares
Facultad de Ciencias Médicas
60 y 120 (1900) La Plata
Argentina

Jay M Baltz
Ottawa Health Research Institute
Loeb Building
725 Parkdale Ave
Ottawa, Ontario K1Y 4E9
Canada
jbaltz@ohri.ca

Horacio E Cingolani
Centro de Investigaciones Cardiovasculares
Facultad de Ciencias Médicas
60 y 120 (1900) La Plata
Argentina
cicmes@infovia.com.ar

Norbert Beier
Diab & Compl Res DA
Merck KGaA
Frankfurter Str 250
D-64271 Darmstadt
Germany

Rodney J Dilley
Morphology Laboratory
Baker Medical Research Institute
Melbourne, Vic 8008
Australia

Irene L. Ennis
Centro de Investigaciones Cardiovasculares
Facultad de Ciencias Médicas
60 y 120 (1900) La Plata
Argentina
Takashi Hisamitsu
Department of Molecular Physiology
National Cardiovascular Research Institute
Fujishirodai 5-7-1, Suita
Osaka 565-8565
Japan

Morris Karmazyn
Department of Physiology and Pharmacology
University of Western Ontario
Medical Sciences Building
London, ON N6A 5C1
Canada
Morris.Karmazyn@fmd.uwo.ca

Hans Jochen Lang
Aventis Pharma Deutschland GmbH
Building G878
65926 Frankfurt am Main
Germany
HansJochen.Lang@aventis.com

Peter J Little
Cell Biology of Diabetes Laboratory
Baker Medical Research Institute
St. Kilda Road Central
PO Box 6492
Melbourne, Vic 8008
Australia
Peter.Little@baker.edu.au

Marcus Müller
Division of Microbial and Molecular Ecology
Institute of Life Sciences
The Hebrew University of Jerusalem
91904 Jerusalem
Israel

M Lee Myers
Division of Cardiovascular Surgery
London Health Sciences Centre-Victoria
University of Western Ontario
London, Ontario N6A 4G5
Canada
Ml.Myers@lhsc.on.ca

John Orlowski
Department of Physiology
McGill University
Montreal, Quebec H3G 1Y6
Canada
john.orlowski@mcgill.ca

Michael H O'Regan
Biomedical Sciences School of Dentistry
University of Detroit Mercy
8200 W. Outer Drive
Detroit, Michigan 48219
USA

Etana Padan
Division of Microbial and Molecular Ecology
Institute of Life Sciences
The Hebrew University of Jerusalem
91904 Jerusalem
Israel
etana@vms.huji.ac.il

Tianxiang Pang
Department of Molecular Physiology
National Cardiovascular Research Institute
Fujishirodai 5-7-1, Suita
Osaka 565-8565
Japan
Néstor G. Pérez
Centro de Investigaciones Cardiovasculares
Facultad de Ciencias Médicas
60 y 120 (1900) La Plata
Argentina

John W Phillis
Department of Physiology
School of Medicine
Wayne State University
540 E. Canfield Ave
Detroit, Michigan 48201
USA
jphillis@med.wayne.edu

Julie G Pilitsis
Department of Neurological Surgery
School of Medicine
Wayne State University
4201 St. Antoine
Detroit, Michigan 48201
USA

Vazhaikkurichi M Rajendran
Departments of Internal Medicine
Cellular and Molecular Physiology and Surgery
Yale University
New Haven, Connecticut 06520
USA

Abraham Rimon
Division of Microbial and Molecular Ecology
Institute of Life Sciences
The Hebrew University of Jerusalem
91904 Jerusalem
Israel

Wolfgang Scholz
Diab & Compl Res DA
Merck KGaA
Frankfurter Str 250
D-64271 Darmstadt
Germany
Wolfgang.Scholz@merck.de

Munekazu Shigekawa
Department of Molecular Physiology
National Cardiovascular Research Institute
Fujishirodai 5-7-1, Suita Osaka 565-8565
Japan

Kenneth W Spitzer
Nora Eccles Harrison Cardiovascular Research and Training Institute
University of Utah
Salt Lake City, Utah 84112
USA
spitzer@cvrti.utah.edu

Tzvi Tzubery
Division of Microbial and Molecular Ecology
Institute of Life Sciences
The Hebrew University of Jerusalem
91904 Jerusalem
Israel

Richard D Vaughan-Jones
Burdon Sanderson Cardiac Science Centre
University Laboratory of Physiology
Parks Road
Oxford, OX13PT
United Kingdom
Shigeo Wakabayashi
Department of Molecular Physiology
National Cardiovascular Research Institute
Fujishirodai 5-7-1, Suita
Osaka 565-8565
Japan
wak@ri.ncvc.go.jp
Foreword

I am extremely honored and pleased to have the opportunity to write a few introductory words for this timely volume on Na⁺/H⁺ exchange. This is a field of investigation that I entered into by challenge and necessity, embraced with passion and finally left in my quest for new discoveries in growth control.

Ten years, one third of my scientific life, has been devoted to uncovering the mysteries of intracellular pH (pHi) regulation with respect to growth factor action. I got started on this new topic in 1980, when I heard a rather provocative hypothesis presented by Enrique Rozengurt at an ICN-UCLA Keystone meeting on "Cell Surface and Malignancy". He showed that all mitogens induced amiloride-sensitive Na⁺ entry into resting cells and proposed that, if a compound stimulates Na⁺ influx, it could be a mitogen. In support of his proposal Enrique reported that the amphipathic polypeptide, mellitin, which induced Na⁺ influx, was indeed mitogenic for 3T3 cells. This was only correlation at this stage. However, I was fascinated by this talk. I immediately approached Enrique to inform him of my skepticism about this beautiful story, and to indicate that I would only be convinced when I succeeded in isolating mutant fibroblasts lacking the amiloride-sensitive Na⁺ transporter. "Good luck!" was his response.

I took Enrique's "good luck" wish to mean that he was not going to compete with us on genetics, which was great! At the same Keystone meeting, I had presented the properties of a glycolysis-deficient fibroblast mutant (phosphoglucose isomerase'), demonstrating that both increased aerobic glycolysis and glucose transport were not essential for the transformed phenotype. Mutant fibroblasts impaired in aerobic glycolysis developed tumors in nude mice with the same incidence as wild type cells. This simple genetic approach killed the Warburg hypothesis. I was therefore confident that somatic cell genetics could be an efficient approach in dissecting growth control mechanisms. Although I knew the risk and the price (at least one to two years of work), I was eager and convinced that it was the right time to attack another important issue in growth control. My goal was to evaluate the role of this mitogen-induced Na⁺ flux mechanism and the associated pHi alkalization in both growth factor action and cell cycle progression.

At that time the "Yale School of Physiology", with the pioneering work of Peter Aronson, Walter Boron and others, illuminated the field of transport and pHi regulation in higher eukaryotes. Their advances greatly facilitated the progress of Sonia Paris and Gilles L'Allemain, working in my group, in understanding the biochemistry and functionality of the amiloride-sensitive Na⁺/H⁺ antipporter. This step was a prerequisite for establishing a genetic screen. The reversibility, ion selectivity and
allosteric activation of the antiporter by intracellular H⁺ provided the basis for my inspiration for “H⁺ suicide selection”. With this killing method and specific genetic screen in hand, it was a simple delight to isolate mammalian cells lacking a functional Na⁺/H⁺ exchanger and to show that pHi, regulated via the growth factor-activatable NHE1, truly did control cell cycle progression. The next step was to get the sequence and structure of this molecule, and it took the time of Claude Sardet’s PhD thesis to complete the relevant work. Functional complementation with human genomic DNA of a mouse cell line lacking the antiporter led to the identification of the first human molecule, NHE1.

This book is entitled "The Sodium-Hydrogen Exchanger: From Molecule to its Role in Disease". I am glad to have, with my group, contributed to the identification of the Molecule and I am particularly pleased to see how this field has expanded beautifully since we left it.

Jacques Pouyssegur
Director of the Institute of Signaling
Developmental Biology and Cancer Research
Nice, France
Preface

The concept of a mammalian sodium-hydrogen exchanger was first proposed in 1961 when Peter Mitchell, a British biochemist and Nobel Laureate (Chemistry, 1978), postulated its existence to explain his chemiosmotic hypothesis. Six years later, Mitchell demonstrated the presence of a sodium-hydrogen exchanger in liver mitochondria. In 1976, Heini Murer and colleagues reported the first identification of a sodium-hydrogen exchanger in cell membranes from mammalian intestine and kidney. As we now know, the sodium-hydrogen exchanger, or NHE (Na-H Exchanger) as it is commonly referred to, is not one protein but consists of a large and growing family of isoforms. These isoforms are derived from distinct genes and play a multiplicity of roles in regulating cellular and organ function in health and disease. To date, eight NHE isoforms, termed NHE-1 to NHE-8, have been cloned. While most NHE isoforms demonstrate substantial tissue specificity, NHE-1 is ubiquitously expressed in virtually all tissues and has been generally referred to as the housekeeping isoform. Other unique sodium-hydrogen exchangers have also been described, such as the newly identified colonic chloride-dependent NHE or the NhaA of E. coli and other species.

This volume brings together international authorities to review major advances in distinct areas of NHE research. These state-of-the-art reviews address a broad range of complementary topics, progressing from the structure and regulation of NHEs to targeting NHE as a therapeutic modality for the treatment of pathological conditions. Indeed, the past two decades have seen startling and rapid advances in our understanding of the regulation of the activity of many NHE isoforms, as well as in the identification and cloning of novel isoforms. NHE has been directly implicated in several pathologies, most notably in the damage that occurs to the myocardium during ischemia and reperfusion and in cardiac hypertrophy and failure. In the area of therapeutics, chemical synthesis of isoform-selective NHE inhibitors has led to the initiation of a number of clinical trials, particularly in the area of cardiovascular disease. Emerging evidence indicates that targeting NHE may also hold promise for other conditions, as discussed in this volume.

The chapters that comprise this volume address the basic structure, function and regulation of NHE proteins, their roles in various diseases, and the development, characterization and clinical evaluation of NHE inhibitors. By covering such a broad range of complementary topics, from molecular biology to clinical therapeutics, this unique volume provides an opportunity for students, basic scientists and clinicians to learn the newest developments in this rapidly evolving field.
We thank all those who helped bring this book to fruition, in particular Pamela Burgess for her outstanding word processing skills. Ultimate thanks go to all contributors without whom this book would not have been possible.

Morris Karmazyn (London, Ontario, Canada)
Metin Avkiran (London, United Kingdom)
Larry Fliegel (Edmonton, Alberta, Canada)