RETINAL DEGENERATIONS
Mechanisms and Experimental Therapy
Recent Volumes in this Series

Volume 524
Dipeptidyl Aminopeptidases in Health and Disease
Edited by Martin Hildebrandt, Burghard F. Klapp, Torsten Hoffmann, and Hans-Ulrich Demuth

Volume 525
Advances in Prostaglandin, Leukotriene, and Other Bioactive Lipid Research: Basic Science and Clinical Applications
Edited by Zeliha Yazici, Giancarlo Folco, Jeffrey M. Drazen, Santosh Nigam, and Takao Shimizu

Volume 526
Taurine 5: Beginning the 21st Century
Edited by John B. Lombardini, Stephen W. Schaffer, and Junichi Azuma

Volume 527
Developments in Tryptophan and Serotonin Metabolism
Edited by Graziella Allegri, Carlo V. L. Costa, Eugenio Ragazzi, Hans Steinhart, and Luigi Varesio

Volume 528
Adamantides-Bechet's Disease
Edited by Christos C. Zouboulis

Volume 529
The Genus Yersinia: Entering the Functional Genomic Era
Edited by Mikael Skurnik, José Antonio Bengoechea, and Kaisa Granfors

Volume 530
Oxygen Transport to Tissue XXIV
Edited by Jeffrey F. Dunn and Harold M. Swartz

Volume 531
Tropical Diseases: From Molecule to Bedside
Edited by Sangkot Marzuki, Jan Verhoef, and Harm Snippe

Volume 532
New Trends in Cancer for the 21st Century
Edited by Antonio Llombart-Bosch and Vicente Felipo

Volume 533
Retinal Degenerations: Mechanisms and Experimental Theory
Edited by Matthew M. LaVail, Joe G. Hollyfield, and Robert E. Anderson

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
RETINAL DEGENERATIONS
Mechanisms and Experimental Therapy

Edited by

Matthew M. LaVail
Beckman Vision Center
University of California, San Francisco
San Francisco, California

Joe G. Hollyfield
Cole Eye Institute
The Cleveland Clinic Foundation
Cleveland, Ohio

and

Robert E. Anderson
Dean A. McGee Eye Institute
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma

Springer Science+Business Media, LLC
Christina Fasser

This book is dedicated to Christina Fasser for her untiring efforts for more than 20 years in the advocacy for patients with retinal degenerations, for fostering interactions among research scientists, clinicians and patients, and for leading an international effort to seek the causes, treatments and cures for retinal degenerative diseases. Diagnosed with retinitis pigmentosa at the age of 13 and blinded by the disease at the age of 42, Christina has worked as an occupational therapist and served in many capacities in her country, Switzerland, to assist and empower those with visual handicaps. She has been the long-time President of Retina International, formerly the International Retinitis Pigmentosa Foundation. Most significantly, Christina has served as a truly remarkable role model for those with visual impairments and as a friend and inspiration to vision scientists worldwide.
Since 1984, we have organized International Symposia on Retinal Degenerations that are held in conjunction with the biennial International Congress of Eye Research (ICER). The timing and location of our Retinal Degeneration Symposia have allowed scientists and clinicians from around the world to convene and present their exciting new findings. The Symposia have been arranged to allow ample time for discussions and one-on-one interactions in a relaxed atmosphere, where international friendships and collaborations could be established.

The X International Symposium on Retinal Degeneration (also known as RD2002) was held on September 30-October 5, 2002 in the beautiful Bürgenstock region of Switzerland. The meeting brought together approximately 150 scientists, retinal specialists in ophthalmology and trainees in the field from all parts of the world. In the course of the meeting, 40 platform and 70 poster presentations were given, and a majority of these are presented in this proceedings volume. As in the past, the most recent findings of most research areas in the field of retinal degenerations were presented. In this particular meeting, the areas of cellular and molecular mechanisms of retinal degeneration, as well as Usher syndrome, were heavily represented. The RD2002 meeting was highlighted by two Special Lectures, the first by Prof. Alan Bird of London, who discussed the potential developing biological therapies for retinal dystrophies and what clinicians should do to be prepared for the advent of treatments. The second Special Lecture was by Dr. Jean Bennett of Philadelphia, who considered many aspects of gene therapy for retinal degenerations, including an update on the successful restoration of vision in dogs lacking RPE65, a model of Leber's congenital amaurosis in young human patients.

We want to give special recognition to our local hosts and co-organizers of the Symposium, Professor Charlotte Remé, Andreas Wenzel and Christian Grimm from Zurich. They and their administrative assistant, Ulli Busse, worked tirelessly for months preparing an extraordinarily smooth meeting and an exhilarating excursion and social program. We also thank the staff of the Bürgenstock Resort and Hotels for their help with the meeting. In addition, we want to recognize the extensive efforts of Professor Yusuf Durlu of Istanbul, Turkey, who had prepared a meeting site and program in the Antalya region of Turkey for the RD2002 meeting. While the venue of the meeting had
to be moved in the aftermath of the September 11th tragedy, Professor Durlu continued to serve as a co-organizer of the RD2002 Symposium.

The Symposium received financial support from a number of organizations. We are particularly pleased to thank the Foundation Fighting Blindness, Owings Mills, Maryland, for its continuing support of this and the previous biennial Symposia, without which we could not have held these important meetings. In addition, for the first time the National Eye Institute of the National Institutes of Health contributed substantially to the meeting. This additional funding allowed the meeting to cost attendees less than several previous Symposia, despite being in an expensive resort locale. Moreover, it allowed us to provide 23 Travel Awards to young investigators and trainees working in the field of retinal degenerations. The response to the Travel Awards program was overwhelming; 52 applicants competed for the 23 Awards, which were selected by the meeting organizers and members of the National Eye Institute and the Foundation Fighting Blindness. We are especially grateful to Dr. Andrew Mariani of the National Eye Institute for his help, guidance, and encouragement with this meeting. The Foundation Fighting Blindness also contributed to the Travel Awards program.

We want to acknowledge the diligent and outstanding efforts of Ms. Holly Whiteside, who carried out most of the administrative aspects of the RD2002 Symposium, designed and maintained the meeting website, and organized the production of this volume. Holly is the Administrative Manager of Dr. Anderson’s laboratory at OUHSC, and she has become the permanent Coordinator for the Retinal Degeneration Symposia. Her dedicated efforts with the Symposia since 2000 have provided continuity heretofore not available, and we are deeply indebted to her.

We want to thank Dr. Michael T. Matthes, the Co-Director of Dr. LaVail’s laboratory for his tireless effort in the final compilation of the manuscript of this book.

We also thank Kluwer Academic/Plenum Publishers for publishing this volume.

Matthew M. LaVail
Joe G. Hollyfield
Robert E. Anderson
CONTENTS

MOLECULAR GENETICS AND CANDIDATE GENES

1. IDENTIFICATION OF THE RP1 AND RP10 (IMPDH1) GENES
 CAUSING AUTOSOMAL DOMINANT RP .. 1
Stephen P. Daiger, Lori S. Sullivan, Sara J. Bowne, Avril Kennan,
Peter Humphries, David G. Birch, John R. Heckenlively, and the RP1 Consortium

2. ON THE ROLE OF IMPDH1 IN RETINAL DEGENERATION 13
Avril Kennan, Aileen Aherne, Sara J. Bowne, Stephen P. Daiger, G. Jane Farrar,
Paul F. Kenna, and Pete Humphries

3. AN INTEGRATED GENETIC APPROACH TO IDENTIFY
 CANDIDATE GENES FOR HUMAN CHROMOSOME 6q-
 LINKED RETINAL DISORDERS ... 19
Pamela S. Lagali, Radha Ayyagari, and Paul W. Wong

4. MOUSE GENETIC APPROACHES TO ACCESS PATHWAYS
 IMPORTANT IN RETINAL FUNCTION: A VALUABLE TOOL
 FOR THE ASSESSMENT OF NOVEL GENE THERAPIES 29
Patsy M. Nishina and Jürgen K. Naggert

5. RETINAL DEGENERATIVE DISORDERS IN SOUTHERN AFRICA:
 A MOLECULAR GENETIC APPROACH .. 35
R.S. Ramesar, L. Roberts, G. Rebello, R. Goliath, A. Vorster, A. September,
L. Ehrenreich, D. Gama, and J. Greenberg
DIAGNOSTIC, CLINICAL, CYTOPATHOLOGICAL AND PHYSIOLOGIC ASPECTS OF RETINAL DEGENERATION

6. COMPARING ROD AND CONE FUNCTION WITH FUNDUS AUTOFLUORESCENCE IMAGES IN RETINITIS PIGMENTOSA ... 41
Anthony G. Robson, Catherine Egan, Graham E. Holder, Alan C. Bird, and Fred W. Fitzke

7. A MODIFIED PROTOCOL FOR THE ASSESSMENT OF VISUAL FUNCTION IN PATIENTS WITH RETINITIS PIGMENTOSA 49
N. Lodha, C. A. Westall, M. Brent, M. Abdolell, and E. Héon

8. PRENATAL HUMAN OCULAR DEGENERATION OCCURS IN LEBER'S CONGENITAL AMAUROSIS: (LCA 1 and 2) 59
Fernanda B. O. Porto, Isabelle Perrault, David Hicks, Jean-Michel Rozet, Noëlle Hanoteau, Sylvain Hanein, Josseline Kaplan, and José A. Sahel

9. LEBER CONGENITAL AMAUROSIS – GENOTYPING REQUIRED FOR POSSIBLE INCLUSION IN A CLINICAL TRIAL 69
Isabelle Perrault, Sylvie Gerber, Sylvain Hanein, Serge Picaud, Jean-Michel Rozet, Jean-Louis Dufier, Arnold Munnich, José Sahel, and Josseline Kaplan

10. TREATMENT OF CYSTOID MACULAR EDEMA RELATED TO RETINITIS PIGMENTOSA WITH INTRAVITREAL TRIAMCINOLONE ACETONIDE: CASE REPORT 79
Juliana M. F. Sallum, Michel E. Farah, and Vinicius S. Saraiva

AGE-RELATED MACULAR DEGENERATION

11. PROTEOMIC APPROACHES TO UNDERSTANDING AGE-RELATED MACULAR DEGENERATION ... 83
Joe G. Hollyfield, Robert G. Salomon, and John W. Crabb

12. PROGRESSIVE PATHWAYS IN AGE-RELATED MACULAR DEGENERATION ... 91
Kimberly A. Howes, Jeanne M. Frederick, Alexander Marks, and Wolfgang Baehr
CONTENTS

13. TISSUE INHIBITOR OF METALLOPROTEINASES-3 AND SORSBY FUNDUS DYSTROPHY ... 97
 Jian Hua Qi, Quteba Ebrahim, and Bela Anand-Apte

14. INVESTIGATIONS OF RPE CELLS OF CHORIOIDAL NEOVASCULAR MEMBRANES FROM PATIENTS WITH AGE-RELATED MACULA DEGENERATION .. 107
 Rita Rosenthal and Olaf Strauß

15. RETINAL AND CHORIOIDAL ALTERATIONS FOLLOWING PHOTODYNAMIC THERAPY .. 115
 Yusuf K. Durlu

USHER SYNDROME AND RELATED TOPICS

16. USHER SYNDROME: CORRELATION BETWEEN VISUAL FIELD SIZE AND MAXIMAL ERG RESPONSE B-WAVE AMPLITUDE ... 123
 Alessandro Iannaccone

17. THE CELLULAR FUNCTION OF THE USHER GENE PRODUCT MYOSIN VIIA IS SPECIFIED BY ITS LIGANDS .. 133
 Uwe Wolfrum

18. MOUSE MODELS FOR USHER SYNDROME 1B ... 143
 Concepcion Lillo, Junko Kitamoto, Xinran Liu, Elizabeth Quint, Karen P. Steel, and David S. Williams

19. SCREEN FOR USHER SYNDROME 1B MUTATIONS IN THE OVINE MYOSIN VIIA GENE ... 151
 Tania Slatter, Sassan M. Azarian, Scott Tebbutt, Marion Maw, and David S. Williams

20. PHOTORECEPTOR INTERSEGMENTAL TRANSPORT AND RETINAL DEGENERATION: A CONSERVED PATHWAY COMMON TO MOTILE AND SENSORY CILIA .. 157
 Joseph C. Besharse, Sheila A. Baker, Katherine Luby-Phelps, and Gregory J. Pazour
ANIMAL MODELS OF RETINAL DEGENERATION

21. INHERITED RETINAL DYSTROPHY IN MER KNOCKOUT MICE 165
Jacque L. Duncan, Haidong Yang, Douglas Vollrath, Douglas Yasumura,
Michael T. Matthes, Nikolaus Trautmann, Aimee V. Chappelow, Wei Feng,
H. Shelton Earp, Glenn K. Matsushima, and Matthew M. LaVail

22. MOUSE MODELS OF HUMAN RETINAL DISEASE CAUSED BY
 EXPRESSION OF MUTANT RHODOPSIN .. 173
May Nour and Muna I. Naash

23. EVALUATION OF INNER RETINAL STRUCTURE IN THE AGED
 RCS RAT ... 181
Sherry Ball, Brett Hanzlicek, Melissa Blum, and Machelle Pardue

24. THE INTACT XENOPUS LAEVIS EYE RUDIMENT: A QUASI-IN
 VIVO SYSTEM FOR THE STUDY OF RETINAL
 DEVELOPMENT AND DEGENERATIONS 189
Monica M. Jablonski

25. STREPTOZOTOCIN-INDUCED DIABETES - A RAT MODEL TO
 STUDY INVOLVEMENT OF RETINAL CELL TYPES IN THE
 ONSET OF DIABETIC RETINOPATHY .. 197
Elisabeth Rungger-Brändle and André A. Dosso

MECHANISMS OF RETINAL DEGENERATION

26. A2E, A FLUOROPHORE OF RPE LIPOFUSCIN: CAN IT CAUSE
 RPE DEGENERATION? .. 205
Janet R. Sparrow, Bolin Cai, Nate Fishkin, Young Pyo Jang, Sonja Krane,
Heidi R. Vollmer, Jilin Zhou, and Koji Nakanishi

27. BRIGHT LIGHT INDUCES RETINAL DEGENERATION BY A
 TRANSDUCIN-INDEPENDENT MECHANISM 213
Elliott Brill, Sujatha Patnala, Janis Lem, and Martin Obin
CONTENTS

28. DOES CONSTITUTIVE PHOSPHORYLATION PROTECT AGAINST PHOTORECEPTOR DEGENERATION IN RPE65−/− MICE? .. 221
Baerbel Rohrer, Zsolt Ablonczy, Sergei Znoiko, Michael Redmond, Jian-Xing Ma, and Rosalie Crouch

29. LIGHT-INDUCED PHOTORECEPTOR DAMAGE TRIGGERS DNA REPAIR: DIFFERENTIAL FATE OF RODS AND CONES 229
M. Soledad Cortina, William C. Gordon, Walter J. Lukiw, and Nicolas G. Bazan

30. MITOCHONDRIAL DELETIONS IN NORMAL AND DEGENERATING RAT RETINA ... 241
Arturo Bravo-Nuevo, Neal Williams, Scott Geller, and Jonathan Stone

31. QUANTITATIVE PCR ANALYSIS OF FosB mRNA EXPRESSION AFTER SHORT DURATION OXYGEN AND LIGHT STRESS 249
Scott F. Geller and Jonathan Stone

32. METABOLIC MODULATION OF VISUAL SENSITIVITY 259
Robert B. Barlow, Bart Farell, and Mukhtar Khan

33. MITOCHONDRIAL UNCOUPLING PROTEINS: REGULATORS OF RETINAL CELL DEATH .. 269
Colin J. Barnstable, Man Li, Rajini Reddy, and Tamas L. Horvath

34. ENERGY DEPLETION HYPOTHESIS FOR RETINITIS PIGMENTOSA ... 277
Marion S. Eckmiller

35. FUNCTIONAL STUDIES OF AIPL1: POTENTIAL ROLE OF AIPL1 IN CELL CYCLE EXIT AND/OR DIFFERENTIATION OF PHOTORECEPTORS ... 287
Dayna T. Akey, Xuemei Zhu, Michael Dyer, Amin Li, Adam Sorensen, Taeko Fukada-Kamitani, Stephen P. Daiger, Cheryl Craft, Tetsu Kamitani, and Melanie M. Sohocki

36. PHOTORECEPTOR DEGENERATION IN PRO23HIS AND S334TER TRANSGENIC RATS .. 297
Donald Lee, Scott Geller, Natalie Walsh, Krisztina Valter, Doug Yasumura, Michael Matthes, Matthew LaVail, and Jonathan Stone
CONTENTS

37. RETINAL DEGENERATION CAUSED BY MUTATIONS IN TULP1 303
Quansheng Xi, Gayle J.T. Pauer, Karen A. West, John W. Crabb, and Stephanie A. Hagstrom

38. TOWARDS UNDERSTANDING THE FUNCTION OF THE TUBBY GENE FAMILY IN THE RETINA .. 309
Sakae Ikeda, Akihiro Ikeda, Jürgen K. Naggert, and Patsy M. Nishina

39. IDENTIFICATION OF DOWNSTREAM MECHANISMS INVOLVED IN PEDF'S ACTIVITY IN THE RETINA BY LARGE SCALE GENE EXPRESSION PROFILING .. 315
Joyce Tombran-Tink, Nuria Lara, Arvind Chappa, Amber R. Tink, Lincoln V. Johnson, and Michelle Staples

40. THE nob MUTATION DOES NOT PROTECT AGAINST LIGHT–INDUCED RETINAL DEGENERATION .. 327
Machelle T. Pardue, Christian Grimm, Andreas Wenzel, and Charlotte E. Remé

BASIC SCIENCE UNDERLYING RETINAL DEGENERATION

41. THE PHAGOCYTOSIS OF OS IS MEDIATED BY THE PI3-KINASE LINKED TYROSINE KINASE RECEPTOR, MER, AND IS STIMULATED BY GAS6 ... 331
Michael O. Hall, Brian J. Agnew, Toshka A. Abrams, and Barry L. Burgess

42. ROLE OF αvβ5 INTEGRIN IN REGULATING PHAGOCYTOSIS BY THE RETINAL PIGMENT EPITHELIUM ... 337
Silvia C. Finnemann

43. COMPARATIVE STUDY OF CATHEPSIN D AND S IN RAT IPE AND RPE CELLS .. 343
Hiroshi Tomita, Eriko Sugano, Toshiaki Abe, Asahi Yamashita, and Makoto Tamai

44. ISOLATION AND CULTURE OF PRIMARY MOUSE RETINAL PIGMENTED EPITHELIAL CELLS .. 347
Daniel Gibbs and David S. Williams
45. REGULATION OF THE VISUAL CYCLE: RETINOL DEHYDROGENASE AND RETINOL FLUORESCENCE MEASUREMENTS IN VERTEBRATE RETINA ... 353
M. Carter Cornwall, Efthymia Tsinal, Rosalie K. Crouch, Barbara Wiggert, Chunhe Chen, and Yiannis Koutalos

46. MELATONIN ENHANCES RETINOIC ACID INDUCTION OF CONE ARRESTIN GENE EXPRESSION IN RETINOBLASTOMA CELLS ... 361
Aimin Li, Xuemei Zhu, Bruce Brown, and Cheryl M. Craft

47. REGULATION OF RETINAL PHOSPHOINOSITIDE 3-KINASE ACTIVITY IN P85α-SUBUNIT KNOCKOUT MICE ... 369
Raju V.S. Rajala, Mark E. McClellan, John D. Ash, and Robert E. Anderson

48. PERIPHERIN/RDS IN SKATE RETINA ... 377
Muna I. Naash, Xi-Qin Ding, Chibo Li, John O’Brien, and Muayyad R. Al-Ubaidi

NEUROPROTECTION AND STEM CELLS

49. XIAP PROTECTS PHOTORECEPTORS FROM N-METHYL-N-NITROSOUREA-INDUCED RETINAL DEGENERATION 385
Dino Petrin, Adam Baker, Jennifer Brousseau, Stuart Coupland, Peter Liston, William W. Hauswirth, Robert G. Korneluk, and Catherine Tsilfidis

50. NEUROPROTECTIVE EFFECT OF ESTROGEN UPON RETINAL NEURONS IN VITRO ... 395
Wei Cao, Raju V.S. Rajala, Feng Li, Robert E. Anderson, Na Wei, Charles E. Soliman, and James F. McGinnis

51. TRANSGENIC RD MICE HARBORING AXOKINE GENE BY RPE65 GENE PROMOTER DOES NOT RESCUE PHOTORECEPTOR DEGENERATION ... 403
Toshiaki Abe, Yuki Yoshioka, Hiroshi Tomita, Yoko Saigo, Tetuso Udono, Shigeki Shibahara, and Makoto Tamai

52. MARROW STROMAL CELLS–MSCs: A SPECIES COMPARISON 407
Anthony Kicic, Adam C. Shanley, Christine M. Hall, and P. Elizabeth Rakoczy
GENE THERAPY

53. GENE THERAPY FOR LEBER CONGENITAL AMAUROSIS 415
Nadine S. Dejneka, Enrico M. Surace, and Jean Bennett

54. FUNCTIONAL AND STRUCTURAL EVALUATION AFTER AAV.RPE65 GENE TRANSFER IN THE CANINE MODEL OF LEBER'S CONGENITAL AMAUROSIS .. 423
Kristina Narfström, Ragnheidur Bragadóttir, T. Michael Redmond, P. Elizabeth Rakoczy, Theo van Veen, and Anitha Bruun

55. ASSESSMENT OF rAAV-MEDIATED GENE THERAPY IN THE Rpe65−/− MOUSE .. 431

56. MÜLLER CELL TRANSDUCTION BY AAV2 IN NORMAL AND DEGENERATIVE RETINAS .. 439
Fong-Qi Liang, Enrico Surace, Nadine S. Dejneka, Albert M. Maguire, and Jean Bennett

57. VIRUS-MEDIATED SECRETION GENE THERAPY—A POTENTIAL TREATMENT FOR OCULAR NEOVASCULARIZATION 447

ABOUT THE EDITORS .. 455

INDEX ... 459