Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy
Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy
Preface

The mitochondrion, an organelle within cells, has long been considered to be the powerhouse of the cell because of its central role in energy production. However, in the last two decades it has become clear that mitochondria also play a key role in cell survival and cell death. More recent findings further implicate a broader perspective on the role of mitochondria in multiple cellular signaling. Defects in mitochondria are associated with the genesis of multiple diseases, including cancer. One of the key functions of mitochondria is to induce cell death in multiple types of cells under physiological or environmental stresses. However, their cell-death–inducing function may be defective in cancer, causing survival and proliferation of cancer cells. Although one of the drawbacks of current cancer therapy is resistance to cell death as a result of defective mitochondrial pathways, these defects provide an opportunity to target tumor mitochondria selectively to induce cancer cell death. Selectively targeting tumor mitochondrial pathways may also decrease toxicity to normal tissues possessing normal functional mitochondria, and thus further enhance therapeutic efficacy.

During the last decade there has been significant emphasis on preventing or curing cancer with natural remedies involving the use of naturally derived phytochemicals, which possess anticancer properties with minimal toxicity. Although further studies are warranted, significant progress has been made investigating the role of mitochondria in controlling cancer cell death and proliferation in response to phytochemicals. This book describes the current status of the impact of phytochemicals on cancer cell death and survival. The key role of mitochondria in cancer prevention and therapy is also illustrated. The book contains contributions from multiple researchers working in the areas of cancer, phytochemistry, and mitochondria. This comprehensive collection of information will be useful to a broad-based audience with a focus on cancer research, prevention, and treatment.

I highly acknowledge the unwavering support and enthusiasm of all the authors and am grateful for their contributions of the chapters in the area of their expertise. I also owe a debt of gratitude to numerous researchers who reviewed the chapters and provided constructive criticism.

Buffalo, New York, USA
Dhyan Chandra, Associate Professor
Contents

1. **OxPhos Defects and Their Role in Cancer Initiation and Progression**
 Nagendra Yadava, Ahmed Khalil and Sallie S. Schneider

2. **Estrogen Receptor—Tumor Suppressor Protein p53 Signaling Crosstalk as Potential Targets of Xenoestrogens**
 Gokul M. Das

3. **Mitochondrial Regulation of Cell-Death**
 Richard Jäger and Howard O. Fearnhead

4. **Cell-Death—Inducing Mechanisms of Cancer Chemopreventive Agents**
 Vijay Mohan, Dhanya Nambiar, Raosaheb K. Kale and Rana P. Singh

5. **Dietary Phytochemicals Target Cancer Stem Cells for Cancer Chemoprevention**
 Dunne Fong and Marion M. Chan

6. **Basic and Translational Research on Dietary Phytochemicals and Cancer Prevention**
 Ashraful Hoque and Xiao-Chun Xu

7. **Mitochondrial Reactive Oxygen Species in Proapoptotic Effect of Promising Cancer Chemopreventive Phytochemicals**
 Anuradha Sehrawat and Shivendra V. Singh

8. **Therapeutic Action of Phytochemicals on Cancer Stem Cells**
 O. Leis, J. Gumuzio and Angel G. Martin
9 Phytochemicals, microRNAs, and Cancer: Implications for Cancer Prevention and Therapy .. 187
Sanjeev K. Srivastava, Sumit Arora, Seema Singh and Ajay P. Singh

10 Optical Imaging of Mitochondria for Cancer Therapy 207
Jonathan F. Lovell

11 Targeting Cellular Signaling for Cancer Prevention and Therapy by Phytochemicals ... 219
Fang Hao, Neelu Yadav and Dhyan Chandra

Index .. 245
Contributors

Sumit Arora Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA

Marion M. Chan Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA

Dhyan Chandra Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology Roswell Park Cancer Institute, Buffalo, New York, USA

Gokul M. Das Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA

Howard O. Fearnhead Pharmacology and Therapeutics, NUI Galway, Galway, Ireland

Dunne Fong Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

J. Gumuzio Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain

Fang Hao Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, USA

Ashraful Hoque Department of Clinical Cancer Prevention, Unit 1360, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Richard Jäger University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany

Raosaheb K. Kale School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India

Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
Ahmed Khalil Pioneer Valley Life Sciences Institute, Springfield, MA, USA
Department of Biology, University of Massachusetts, Amherst, MA, USA

O. Leis Regulation of Cell Growth Laboratory, Fundacion Inbiomed, San Sebastian, Spain

Jonathan F. Lovell Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, USA
Department of Biomedical Engineering, University at Buffalo, Buffalo, USA

Angel G. Martin Fundación Inbiomed, San Sebastian, Gipuzkoa, Spain

Vijay Mohan School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India

Dhanya Nambiar Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

Anuradha Sehrawat Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Seema Singh Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA

Ajay P. Singh Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA

Rana P. Singh School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Shivendra V. Singh Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Sallie S. Schneider Pioneer Valley Life Sciences Institute, Springfield, MA, USA
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA

Sanjeev K. Srivastava Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA

Neelu Yadav Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York, USA
Contributors

Nagendra Yadava Pioneer Valley Life Sciences Institute, Springfield, MA, USA
Division of Endocrinology, Diabetes and Metabolism, Baystate Medical Center of
Tufts University School of Medicine, Springfield, MA, USA
Department of Biology, University of Massachusetts, Amherst, MA, USA

Xiao-Chun Xu Department of Clinical Cancer Prevention, Unit 1360, The
University of Texas MD Anderson Cancer Center, Houston, TX, USA