3D Biometrics
3D Biometrics

Systems and Applications
Recently, biometric technology has been one of the hottest research topics in the IT field, because of the demands for accurate personal identification or verification to solve security problems in various applications, such as, e-commerce, Internet banking, access control, immigration, law enforcement and so on. Especially after the 9/11 terrorist attacks, the interest in biometrics-based security solutions and applications has increased dramatically.

Although a lot of traditional biometric technologies and systems such as fingerprint, face, palmprint, voice and signature have been greatly developed over the past decades, they are application dependent and still have some limitations. 3D biometric technologies are emerging for high security requirement with their advantages: 3D biometrics are much more robust to illumination and pose variations from 2D biometrics; 3D range data may offer a richer information source for feature extraction. Besides, it can fuse with 2D biometrics to enhance the system accuracy; 3D biometric systems are more robust to attack, since 3D information is more difficult to be duplicated or counterfeited.

With the development of 3D imaging techniques, it is possible to capture real-time 3D biometric characteristics. Recently, 3D techniques have been used in biometric authentication, such as 3D face, 3D fingerprint, 3D palmprint and 3D ear recognition, and some commercial 3D biometric systems have been pushed into the market already.

Our team certainly regards 3D biometrics as a very potential research field, and has worked on it since 2005. We are the first group that developed the 3D palmprint technology and system, and our first technical paper of 3D palmprint, “Three dimensional palmprint recognition using structured light imaging”, was published in 2008. We built the first 3D palmprint database (PolyU 3D Palmprint Database), which contains 8,000 samples collected from 400 different palms, and have published it online since 2010. Until now this database has been downloaded by many researchers. This work was followed by more extensive investigations into 3D palmprint technology, and this research has now evolved to other 3D biometric fields, such as 3D ear by line structured light, 3D fingerprint by multi-view imaging and 3D face by time-of-flight methods. Then, a number of algorithms have been proposed for these 3D biometric technologies, including calibration, 3D modeling, segmentation approaches, feature extraction methodologies, matching
strategies and classification ideas. Both explosion of interest and diversity of approaches have been reflected in the wide range of recently published technical papers.

This book seeks to gather and present current knowledge relevant to the basic concepts, definition and features of 3D biometric technology in a unified way, and demonstrates some 3D biometric identification system prototypes. We hope thereby to provide readers with a concrete survey of the field in one volume. Selected chapters provide in-depth guides to specific 3D imaging methods, algorithm designs and implementations.

This book provides a comprehensive introduction to 3D biometric technologies. It is suitable for different levels of readers: those who want to learn more about 3D biometric technology, and those who wish to understand, participate in and/or develop a 3D biometric authentication system. We have tried to keep explanations elementary without sacrificing depth of coverage or mathematical rigor. Part I of this book explains the background of 3D biometrics. 3D ear recognition by line structured light is introduced in Part II. Part III presents 3D palmprint technologies by using modulated structured light imaging. 3D fingerprint identification by multi-view imaging and 3D face verification by time-of-flight method are developed in Part IV and Part V, respectively.

This book is a comprehensive introduction to both theoretical issues and practical implementation in 3D biometric authentication. It will serve as a textbook or as a useful reference for graduate students and researchers in the fields of computer science, electrical engineering, systems science and information technology. Researchers and practitioners in industry and R&D laboratories working on security system design, biometrics, immigration, law enforcement, control and pattern recognition will also find much of interest in this book.

The work is supported by the NSFC funds under project Nos. 61272292, 61271344 and 61020106004, Shenzhen Fundamental Research fund JC201005260184A, and Key Laboratory of Network Oriented Intelligent Computation, Shenzhen, China.

Hong Kong, July 2012
China

David Zhang
Guangming Lu
Contents

Part I Background of 3D Biometrics

1 Overview ... 3
 1.1 The Need for Biometrics 3
 1.1.1 Biometrics System Architecture 5
 1.1.2 Operation Mode of a Biometrics System 6
 1.1.3 Evaluation of Biometrics and Biometrics System 6
 1.2 Different Biometrics Technologies 7
 1.2.1 One-Dimension Technologies 8
 1.2.2 Two-Dimension Technologies 9
 1.3 A New Trend: 3D Biometrics 14
 1.4 Arrangement of this Book 15
 References .. 16

2 3D Biometrics Technologies and Systems 19
 2.1 Introduction .. 19
 2.2 Classification of 3D Biometrics Imaging Methods 20
 2.2.1 Single View Imaging with Line Structured Light 21
 2.2.2 Single View Imaging with Modulated Structured Light 21
 2.2.3 Multi-View Imaging 23
 2.2.4 Single View Imaging by Using Time-of-Flight 24
 2.3 3D Biometrics Technologies 25
 2.3.1 3D Ear Recognition 25
 2.3.2 3D Palmprint Recognition 26
 2.3.3 3D Fingerprint Recognition 28
 2.3.4 3D Face Recognition 29
 2.4 Security Applications 30
 2.4.1 Border Control 30
 2.4.2 Citizen ID Program 30
 2.4.3 Banking .. 31
 2.4.4 Military .. 31
 2.5 Summary .. 31
 References .. 31
Contents

Part II 3D Ear Recognition Based on Line Structured Light

3 3D Ear Acquisition System ... 37
 3.1 Introduction ... 37
 3.2 Capturing Device Design .. 38
 3.2.1 The Principle of Triangulation Imaging 38
 3.2.2 System Framework ... 39
 3.2.3 System Calibration .. 41
 3.3 Ear Segmentation Based on Compound Curvature 42
 3.4 Posture Normalization Method Using Projection Density 43
 3.5 Experimental Results ... 47
 3.6 Summary .. 50
References ... 50

4 Two Significant Characteristics in 3D Ear 51
 4.1 Introduction ... 51
 4.2 Unique Ear-Cheek Angle Feature 54
 4.2.1 Definition ... 54
 4.2.2 Angle Feature: Extraction 55
 4.3 Difference Between Two Ears from the Same Person 59
 4.3.1 2D and 3D Ear Image Normalization 59
 4.3.2 Distance Between the Two Ears of the Same Person 61
 4.4 Experimental Results ... 63
 4.4.1 3D Ear Dataset .. 63
 4.4.2 Ear-Cheek Angle Results 64
 4.4.3 Individual’s Two Ears’ Results 66
 4.5 Summary .. 67
References ... 68

5 3D Ear Feature Extraction and Recognition 69
 5.1 Introduction ... 69
 5.2 3D Features Definition .. 70
 5.3 3D Features Extraction .. 70
 5.3.1 Point Feature ... 70
 5.3.2 Line Feature .. 71
 5.3.3 Area Feature .. 72
 5.3.4 Angle Feature ... 74
 5.3.5 Distance Feature ... 75
 5.4 Experimental Results ... 76
 5.4.1 Global Feature Indexing 76
 5.4.2 Matching by Local and Global Features 78
 5.5 Summary .. 80
References ... 80
Part III 3D Palmprint Authentication Using Modulated Structured Light

6 3D Palmprint Capturing System .. 85
 6.1 Introduction .. 85
 6.2 Acquisition System Design .. 88
 6.2.1 Feasibility Analysis .. 88
 6.2.2 Components of the System ... 91
 6.2.3 System Calibration and Measurement 92
 6.3 Parameter Selection .. 96
 6.4 System Performance Analysis ... 99
 6.4.1 Grating Wavelength .. 99
 6.4.2 Signal to Noise Ratio ... 101
 6.4.3 Data Analysis .. 101
 6.5 Summary ... 103
References .. 103

7 3D Information in Palmprint .. 105
 7.1 Introduction ... 106
 7.2 3D Palmprint Data Acquisition ... 108
 7.3 Feature Extraction from 3D Palmprint 111
 7.3.1 ROI Extraction .. 111
 7.3.2 Curvature Calculation .. 113
 7.3.3 Mean Curvature Image and Gaussian Curvature Image 113
 7.3.4 Points Classification Using Surface Types 114
 7.4 Feature Matching and Fusion ... 118
 7.4.1 MCI/GCI Feature Matching ... 119
 7.4.2 ST Feature Matching .. 120
 7.4.3 Matching Score Fusion of MCI, GCI and ST 120
 7.4.4 Fusion of 2D and 3D Palmprint Information 121
 7.5 Experimental Results .. 123
 7.5.1 Anti-Counterfeiting Test .. 123
 7.5.2 Robustness Test: Illumination, Scrabbling and Dirty 126
 7.5.3 Database Establishment and Recognition Results 127
 7.6 Summary ... 132
References .. 132

8 3D Palmprint Classification by Global Features 135
 8.1 Introduction ... 135
 8.2 Global Features: Definitions and Extraction 137
 8.2.1 The Region of Interest ... 137
 8.2.2 Three Global Features ... 138
 8.3 Classification with Global Features 141
 8.3.1 Dimension Reduction Using Orthogonal LDA 142
11.2.2 Correspondence Establishment for Touchless Fingerprints 197
11.2.3 Finger Shape Model Estimation .. 206
11.3 Experimental Results and Analysis ... 208
 11.3.1 Reconstruction Technique and Capture System Error Analysis 208
 11.3.2 3D Fingerprint Reconstruction Results and Analysis 211
11.4 Summary ... 214
References .. 215

12 3D Fingerprint Identification System ... 217
 12.1 Introduction .. 217
 12.2 Definition of Level Zero Features in 3D Fingerprint Images 218
 12.3 3D Fingerprint Image Analysis ... 219
 12.3.1 Source of the 3D Fingerprint Image ... 219
 12.3.2 Level Zero Feature Extraction ... 220
 12.4 Experimental Results and Analysis .. 223
 12.4.1 Dataset ... 223
 12.4.2 Matching Result Comparison Based on Curve-Skeleton Features 224
 12.4.3 Gender Classification Based on Overall Curvature Feature 226
 12.4.4 Fusion Results of 2D and 3D Fingerprint Features 227
 12.5 Summary .. 229
References .. 229

Part V 3D Face Verification by ToF Method

13 The Principle of 3D Camera Imaging ... 233
 13.1 Introduction of Time-of-Flight Camera .. 233
 13.2 System Principle and Architecture of ToF .. 234
 13.3 Pre-Processing ... 243
 13.3.1 Denosing of Range Data ... 243
 13.3.2 Face Detection ... 243
 13.3.3 Active Shape Model ... 245
 13.4 Experiment and Discussion .. 249
 13.5 Summary .. 255
References .. 255

14 3D Face Verification System ... 257
 14.1 Introduction ... 257
 14.1.1 2D Face Recognition .. 258
 14.1.2 3D Face Recognition .. 260
 14.2 Feature Extraction .. 264