Multi-Objective Optimization in Physical Synthesis of Integrated Circuits
Acknowledgments

This book would not have been possible without the immeasurable self-sacrifice of my perfect wife, Amy. She has worked day and night by my side for years to make our home and family prosperous. I love you very much. Our two beautiful sons George and Victor have brought me indescribable joy and gave me hope for the future when it seemed all was lost. I love you two in ways I never thought possible. I am eternally grateful to her for the faith she has placed in me. I will do everything I can to reward her investment.

I am also deeply indebted to her parents Ren Fang Zhang and Yue Xia Gong who have come from their home in China to live with us and help raise our babies. Without them, I don’t know how it would be possible for me to balance graduate school, a full-time job, and a new family. I will be sorry when they return home.

My advisor, Professor Igor Markov, has also poured an incredible amount of work into training me to be capable of writing this. He has defended me when it was not convenient, supported me when it seemed hopeless, and never gave up on me until the task was complete. I am grateful for all his efforts as well as all the opportunities and second chances he has given me. I truly hope it has been as worth it for him as it has been for me.

I also want to thank all the people at IBM Austin Research Lab, especially my manager Chuck Alpert and my mentor Gi-Joon Nam. Chuck’s approach to industrial research is truly unique and I feel very fortunate to have worked with him during graduate school. Gi-Joon has seen my value from the very start and stuck his neck out for me when it mattered most. I hope he feels proud of his judgment. I have also made many friendships here, and this research group is an amazing place to work. Zhuo Li, Jarrod Roy, Cliff Sze, Natarajan Viswanathan, Mehmet Yildiz and Nancy Zhou are brilliant people who have all had their impact on this book. Working with these people on a topic I love has truly made it a pleasure to come to work each day. I also want to thank Anne Gattiker for accompanying me on so many occasions while I burned the midnight oil to finish this book. John Keane and Vipin Sachdeva have also been close friends who enriched my life during our time together at IBM.
I also have to thank all my friends from igroup who have stayed close despite long distances and made life bearable. Jarrod Roy has been an especially close friend, and he is not so far away today. Smita Krishnaswamy has been my friend for even longer, and still brainstorms with me daily. Aaron may have left igroup a long time ago, but he is still making me laugh every day. George Viamontes has moved on to greener pastures, but he is always willing to lend good advice when its needed. Esha Krishnaswamy was never a member of igroup, but she has been there for moral support when I wanted it. Jin Hu has been a good friend and helped me with this book and been my boots on the ground in Michigan. And while I haven’t been in Michigan for the current group of graduate students, Myung-Chul Kim, and Dong-Jin Lee, and Hector Garcia have all been good friends during my visits.

I also want to thank the other friends I have managed to keep over the years despite everyone being spread all over the country. Brandon Hanson has been by my side through a lot of interesting adventures, and would be there again if I needed him. Jason Feyers has been a really close friend and showed me a lot about life. Sid Bottoms and his family have always been good to me, and he is a really great guy. Max Mass taught me a lot of things and I have to thank him for that. Ryan Park has always been fun and I wish I stayed in better touch with him now.

Last but not least, I want to thank my parents George and Maureen who gave everything they had to support me, as well as my sister and brothers Crystal, Mitchell and Evan, who look up to me and give me motivation to carry on. I love you all very much. I could not have been successful without the foundation they built. I expect my family’s future to be bright thanks to their support and sacrifices.
Contents

Part I Introduction and Prior Art

1 Timing Closure for Multi-Million-Gate Integrated Circuits 3
 1.1 Challenges in Physical Synthesis . 3
 1.2 Our Contributions . 5
 1.3 Organization of the Book . 8
 References . 8

2 State of the Art in Physical Synthesis . 11
 2.1 Progression of a Modern Physical-Synthesis Flow 11
 2.2 The Controller/Transformation Approach 13
 2.3 Circuit Delay Estimation . 14
 2.4 Current Trends in Physical Synthesis 16
 References . 17

Part II Local Physical Synthesis and Necessary Analysis Techniques

3 Buffer Insertion During Timing-Driven Placement 21
 3.1 Introduction . 21
 3.2 Background . 24
 3.3 The RUMBLE Timing Model . 25
 3.4 Timing-Driven Placement with Buffering 29
 3.5 The RUMBLE Algorithm . 34
 3.6 Empirical Validation . 38
 3.7 Conclusions . 45
 References . 45
Contents

8.6 Conclusions .. 131
References ... 132

9 Co-Optimization of Latches and Clock Networks 133
9.1 Introduction .. 133
9.2 Background .. 135
9.3 Disruptive Changes in Physical Synthesis 137
9.4 A Graceful Physical-Synthesis Flow 139
9.5 Empirical Validation 143
9.6 Conclusions .. 147
References ... 148

10 Conclusions .. 149
10.1 Summary of Results 149
10.2 Opportunities for Further Optimizations 153
References ... 155