Advances in Industrial Control
Steven X. Ding

Model-Based Fault Diagnosis Techniques

Design Schemes, Algorithms and Tools

Second Edition

Springer
To My Parents and Eve Limin
The series *Advances in Industrial Control* aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination.

When assessing the performance of a control system, it is easy to overlook the fundamental question of whether the actual system configuration and set up has all the features and hardware that will enable the process to be controlled per se. If the system can be represented by a reasonable linear model, then the characteristics of a process that create limitations to achieving various control performance requirements can be identified and listed. Such information can be used to produce guidelines that give a valuable insight as to what a system can or cannot achieve in terms of performance. In control systems analysis textbooks, these important properties are often given under terms such as “input–output controllability” and “dynamic resilience”.

It is interesting to see similar questions arising in the study of fault detection and isolation (FDI) systems. At a fundamental level, the first question is not one of the performance of the fault detection and analysis system, but of whether the underlying process has the structure and properties to allow faults to be detected, isolated and identified. As with the analysis of the control case, if the system can be represented by a linear model then definitions and conditions can be given as to whether the system is generically fault detectable, fault isolatable and fault identifiable. Fault detectability is about whether a system fault would cause changes in the system outputs independently of the type and size of the fault, fault isolatability is a matter of whether the changes in the system output caused by different faults are distinguishable (from for example, system output changes caused by the presence of a disturbance) and finally fault identifiability is about whether the mapping from
the system output to the fault is unique since if this is so then the fault is identifiable. With the fundamental conditions verified, the engineer can proceed to designing the FDI system. All these issues, along with design techniques based on models with demonstrative case study applications can be found in this comprehensive second edition of Professor Steven Ding’s book *Model-Based Fault Diagnosis Technique: Design Schemes, Algorithms and Tools* that has now entered the *Advances in Industrial Control* series of monographs.

The key practical issues that complicate the design of a FDI system come from two sources. Firstly from the process: Many process plants and installations are often subject to unknown disturbances and it is important to be able to distinguish these upsets from genuine faults. Similarly process noise, emanating from the mechanisms within the process and from the measurements sensors themselves, is usually present in real systems so it is important that process measurement noise does not trigger false alarms. The second set of issues arises from FDI design itself where model uncertainty is present. This may exhibit itself as simply imperfect process-operational knowledge with the result that the FDI system is either too sensitive or too insensitive. Alternatively, model uncertainty (model inaccuracy) may well exist and the designer will be advised to use a robust FDI scheme. Professor Ding provides solutions, analysis and discussion of many of these technical FDI issues in his book.

A very valuable feature of the book presentation is the use of five thematic case study examples used to illuminate the substantial matters of theory, algorithms and implementation. The case study systems are:

- speed control of a dc motor;
- an inverted pendulum control system;
- a three-tank system;
- a vehicle lateral dynamical system; and
- a continuous stirred tank heater system.

Further, a useful aspect of these case study systems is that four of them are linked to laboratory-scale experimental rigs, thus presenting the academic and engineering reader with the potential to obtain direct applications experience of the FDI techniques described.

The first edition of this book was a successful enterprise and since its publication in 2008 the model-based FDI field has grown in depth and insight. Professor Ding has taken the opportunity to update the book by adding more recent research findings and including a new case study example from the industrial process area. The new edition is a very welcome addition to the *Advances in Industrial Control* series.

Industrial Control Centre, Glasgow, Scotland, UK

M.J. Grimble

M.A. Johnson
Preface

Model-based fault diagnosis is a vital field in the research and engineering domains. In the past years since the publication of this book, new diagnostic methods and successful applications have been reported. During this time, I have also received many mails with constructive remarks and valuable comments on this book, and enjoyed interesting and helpful discussions with students and colleagues during classes, at conferences and workshops. All these motivated me to work on a new edition.

The second edition retains the original structure of the book. Recent results on the robust residual generation issues and case studies have been added. Chapter 14 has been extended to include additional fault identification schemes. In a new chapter, fault diagnosis in feedback control systems and fault-tolerant control architectures are addressed. Thanks to the received remarks and comments, numerous revisions have been made.

A part of this book serves as a textbook for a Master course on *Fault Diagnosis and Fault Tolerant Systems*, which is offered in the Department of Electrical Engineering and Information Technology at the University of Duisburg-Essen. It is recommended to include Chaps. 1–3, 5, 7 (partly), 9, 10, 12–15 (partly) in this edition for such a Master course. It is worth mentioning that this book is so structured that it can also be used as a self-study book for engineers in the application fields of automatic control.

I would like to thank my Ph.D. students and co-worker for their valuable contributions to the case study. They are Tim Könings (inverted pendulum), Hao Luo (three-tank system and CSTM), Jedsada Saijai and Ali Abdo (vehicle lateral dynamic system), Ping Liu (DC motor) and Jonas Esch (CSTM).

Finally, I would like to express my gratitude to Oliver Jackson from Springer-Verlag and the Series Editor for their valuable support.

Duisburg, Germany

Steven X. Ding
Contents

Part I Introduction, Basic Concepts and Preliminaries

1 Introduction ... 3
 1.1 Basic Concepts of Fault Diagnosis Technique 4
 1.2 Historical Development and Some Relevant Issues 8
 1.3 Notes and References .. 10

2 Basic Ideas, Major Issues and Tools in the Observer-Based FDI Framework .. 13
 2.1 On the Observer-Based Residual Generator Framework 13
 2.2 Unknown Input Decoupling and Fault Isolation Issues 14
 2.3 Robustness Issues in the Observer-Based FDI Framework . 15
 2.4 On the Parity Space FDI Framework 16
 2.5 Residual Evaluation and Threshold Computation 17
 2.6 FDI System Synthesis and Design 18
 2.7 Notes and References 18

3 Modelling of Technical Systems 21
 3.1 Description of Nominal System Behavior 22
 3.2 Coprime Factorization Technique 23
 3.3 Representations of Systems with Disturbances 25
 3.4 Representations of System Models with Model Uncertainties . 25
 3.5 Modelling of Faults .. 27
 3.6 Modelling of Faults in Closed-Loop Feedback Control Systems 29
 3.7 Case Study and Application Examples 31
 3.7.1 Speed Control of a DC Motor 31
 3.7.2 Inverted Pendulum Control System 34
 3.7.3 Three-Tank System 38
 3.7.4 Vehicle Lateral Dynamic System 41
 3.7.5 Continuous Stirred Tank Heater 46
 3.8 Notes and References 49
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Fault Detectability, Isolability and Identifiability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.1 Fault Detectability</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4.2 Excitations and Detection of Multiplicative Faults</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>4.3 Fault Isolability</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>4.3.1 Concept of System Fault Isolability</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4.3.2 Fault Isolability Conditions</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>4.4 Fault Identifiability</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>4.5 Notes and References</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Part II Residual Generation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Basic Residual Generation Methods</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>5.1 Analytical Redundancy</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5.2 Residuals and Parameterization of Residual Generators</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>5.3 Issues Related to Residual Generator Design and Implementation</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>5.4 Fault Detection Filter</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>5.5 Diagnostic Observer Scheme</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5.5.1 Construction of Diagnostic Observer-Based Residual Generators</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5.5.2 Characterization of Solutions</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>5.5.3 A Numerical Approach</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>5.5.4 An Algebraic Approach</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>5.6 Parity Space Approach</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>5.6.1 Construction of Parity Relation Based Residual Generators</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>5.6.2 Characterization of Parity Space</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>5.6.3 Examples</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>5.7 Interconnections, Comparison and Some Remarks</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>5.7.1 Parity Space Approach and Diagnostic Observer</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>5.7.2 Diagnostic Observer and Residual Generator of General Form</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>5.7.3 Applications of the Interconnections and Some Remarks</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>5.7.4 Examples</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>5.8 Notes and References</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>Perfect Unknown Input Decoupling</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>6.1 Problem Formulation</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>6.2 Existence Conditions of PUIDP</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>6.2.1 A General Existence Condition</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>6.2.2 A Check Condition via Rosenbrock System Matrix</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>6.2.3 An Algebraic Check Condition</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>6.3 A Frequency Domain Approach</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>6.4 UIFDF Design</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.4.1 The Eigenstructure Assignment Approach</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Geometric Approach</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6.5 UIDO Design</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>6.5.1 An Algebraic Approach</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Unknown Input Observer Approach</td>
<td>142</td>
</tr>
</tbody>
</table>
6.5.3 A Matrix Pencil Approach to the UIDO Design 146
6.5.4 A Numerical Approach to the UIDO Design 150
6.6 Unknown Input Parity Space Approach 152
6.7 An Alternative Scheme—Null Matrix Approach 153
6.8 Discussion 154
6.9 Minimum Order Residual Generator 154
6.9.1 Minimum Order Residual Generator Design by Geometric Approach 155
6.9.2 An Alternative Solution 157
6.10 Notes and References 160

7 Residual Generation with Enhanced Robustness Against Unknown Inputs 163
7.1 Mathematical and Control Theoretical Preliminaries 164
7.1.1 Signal Norms 165
7.1.2 System Norms 167
7.1.3 Computation of \mathcal{H}_2 and \mathcal{H}_∞ Norms 169
7.1.4 Singular Value Decomposition (SVD) 171
7.1.5 Co-Inner–Outer Factorization 171
7.1.6 Model Matching Problem 174
7.1.7 Essentials of the LMI Technique 175
7.2 Kalman Filter Based Residual Generation 177
7.3 Robustness, Fault Sensitivity and Performance Indices 180
7.3.1 Robustness and Sensitivity 181
7.3.2 Performance Indices: Robustness vs. Sensitivity 182
7.3.3 Relations Between the Performance Indices 182
7.4 Optimal Selection of Parity Matrices and Vectors 184
7.4.1 $S_{f,+}/R_d$ as Performance Index 184
7.4.2 $S_{f,-}/R_d$ as Performance Index 188
7.4.3 $J_{S=R}$ as Performance Index 190
7.4.4 Optimization Performance and System Order 192
7.4.5 Summary and Some Remarks 193
7.5 \mathcal{H}_∞ Optimal Fault Identification Scheme 196
7.6 $\mathcal{H}_2/\mathcal{H}_2$ Design of Residual Generators 198
7.7 Relationship Between $\mathcal{H}_2/\mathcal{H}_2$ Design and Optimal Selection of Parity Vectors 201
7.8 LMI Aided Design of FDF 208
7.8.1 \mathcal{H}_2 to \mathcal{H}_2 Trade-off Design of FDF 208
7.8.2 On the \mathcal{H}_- Index 213
7.8.3 \mathcal{H}_2 to \mathcal{H}_- Trade-off Design of FDF 221
7.8.4 \mathcal{H}_∞ to \mathcal{H}_- Trade-off Design of FDF 223
7.8.5 \mathcal{H}_∞ to \mathcal{H}_- Trade-off Design of FDF in a Finite Frequency Range 225
7.8.6 An Alternative \mathcal{H}_∞ to \mathcal{H}_- Trade-off Design of FDF 226
7.8.7 A Brief Summary and Discussion 229
Contents

Part II Residual Generation and Enhanced Robustness Against Model Uncertainties

8 Residual Generation with Enhanced Robustness Against Model Uncertainties

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Preliminaries</td>
<td>250</td>
</tr>
<tr>
<td>8.1.1</td>
<td>LMI Aided Computation for System Bounds</td>
<td>250</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Stability of Stochastically Uncertain Systems</td>
<td>251</td>
</tr>
<tr>
<td>8.2</td>
<td>Transforming Model Uncertainties into Unknown Inputs</td>
<td>252</td>
</tr>
<tr>
<td>8.3</td>
<td>Reference Model Based Strategies</td>
<td>254</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Basic Idea</td>
<td>254</td>
</tr>
<tr>
<td>8.3.2</td>
<td>A Reference Model Based Solution for Systems with Norm-Bounded Uncertainties</td>
<td>254</td>
</tr>
<tr>
<td>8.4</td>
<td>Residual Generation for Systems with Polytopic Uncertainties</td>
<td>261</td>
</tr>
<tr>
<td>8.4.1</td>
<td>The Reference Model Scheme Based Scheme</td>
<td>262</td>
</tr>
<tr>
<td>8.4.2</td>
<td>$\mathcal{H}\infty$ to $\mathcal{H}\infty$ Design Formulation</td>
<td>266</td>
</tr>
<tr>
<td>8.5</td>
<td>Residual Generation for Stochastically Uncertain Systems</td>
<td>267</td>
</tr>
<tr>
<td>8.5.1</td>
<td>System Dynamics and Statistical Properties</td>
<td>268</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Basic Idea and Problem Formulation</td>
<td>269</td>
</tr>
<tr>
<td>8.5.3</td>
<td>An LMI Solution</td>
<td>270</td>
</tr>
<tr>
<td>8.5.4</td>
<td>An Alternative Approach</td>
<td>277</td>
</tr>
<tr>
<td>8.6</td>
<td>Notes and References</td>
<td>280</td>
</tr>
</tbody>
</table>

Part III Residual Evaluation and Threshold Computation

9 Norm-Based Residual Evaluation and Threshold Computation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Preliminaries</td>
<td>286</td>
</tr>
<tr>
<td>9.2</td>
<td>Basic Concepts</td>
<td>288</td>
</tr>
<tr>
<td>9.3</td>
<td>Some Standard Evaluation Functions</td>
<td>289</td>
</tr>
<tr>
<td>9.4</td>
<td>Basic Ideas of Threshold Setting and Problem Formulation</td>
<td>291</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Dynamics of the Residual Generator</td>
<td>292</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Definitions of Thresholds and Problem Formulation</td>
<td>293</td>
</tr>
<tr>
<td>9.5</td>
<td>Computation of $J_{th,RMS,2}$</td>
<td>296</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Computation of $J_{th,RMS,2}$ for the Systems with the Norm-Bounded Uncertainty</td>
<td>296</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Computation of $J_{th,RMS,2}$ for the Systems with the Polytopic Uncertainty</td>
<td>300</td>
</tr>
<tr>
<td>9.6</td>
<td>Computation of $J_{th,peak,peak}$</td>
<td>302</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Computation of $J_{th,peak,peak}$ for the Systems with the Norm-Bounded Uncertainty</td>
<td>302</td>
</tr>
</tbody>
</table>
9.6.2 Computation of $J_{th,pk,pk}$ for the Systems with the Polytopic Uncertainty

9.7 Computation of $J_{th,pk,2}$

9.7.1 Computation of $J_{th,pk,2}$ for the Systems with the Norm-Bounded Uncertainty

9.7.2 Computation of $J_{th,pk,2}$ for the Systems with the Polytopic Uncertainty

9.8 Threshold Generator

9.9 Notes and References

10 Statistical Methods Based Residual Evaluation and Threshold Setting

10.1 Introduction

10.2 Elementary Statistical Methods

10.2.1 Basic Hypothesis Test

10.2.2 Likelihood Ratio and Generalized Likelihood Ratio

10.2.3 Vector-Valued GLR

10.2.4 Detection of Change in Variance

10.2.5 Aspects of On-Line Realization

10.3 Criteria for Threshold Computation

10.3.1 The Neyman–Pearson Criterion

10.3.2 Maximum a Posteriori Probability (MAP) Criterion

10.3.3 Bayes’ Criterion

10.3.4 Some Remarks

10.4 Application of GLR Testing Methods

10.4.1 Kalman Filter Based Fault Detection

10.4.2 Parity Space Based Fault Detection

10.5 Notes and References

11 Integration of Norm-Based and Statistical Methods

11.1 Residual Evaluation in Stochastic Systems with Deterministic Disturbances

11.1.1 Residual Generation

11.1.2 Problem Formulation

11.1.3 GLR Solutions

11.1.4 An Example

11.2 Residual Evaluation Scheme for Stochastically Uncertain Systems

11.2.1 Problem Formulation

11.2.2 Solution and Design Algorithms

11.3 Probabilistic Robustness Technique Aided Threshold Computation

11.3.1 Problem Formulation

11.3.2 Outline of the Basic Idea

11.3.3 LMIs Used for the Solutions

11.3.4 Problem Solutions in the Probabilistic Framework

11.3.5 An Application Example

11.3.6 Concluding Remarks

11.4 Notes and References
Part IV Fault Detection, Isolation and Identification Schemes

12 Integrated Design of Fault Detection Systems .. 369
12.1 FAR and FDR .. 370
12.2 Maximization of Fault Detectability by a Given FAR 373
 12.2.1 Problem Formulation 373
 12.2.2 Essential Form of the Solution 374
 12.2.3 A General Solution .. 376
 12.2.4 Interconnections and Comparison 379
 12.2.5 Examples .. 383
12.3 Minimizing False Alarm Number by a Given FDR 386
 12.3.1 Problem Formulation .. 387
 12.3.2 Essential Form of the Solution 388
 12.3.3 The State Space Form 390
 12.3.4 The Extended Form .. 392
 12.3.5 Interpretation of the Solutions and Discussion 393
 12.3.6 An Example ... 397
12.4 On the Application to Stochastic Systems ... 398
 12.4.1 Application to Maximizing FDR by a Given FAR 399
 12.4.2 Application to Minimizing FAR by a Given FDR 400
 12.4.3 Equivalence Between the Kalman Filter Scheme and the Unified Solution 400
12.5 Notes and References .. 402

13 Fault Isolation Schemes ... 405
13.1 Essentials ... 406
 13.1.1 Existence Conditions for a Perfect Fault Isolation 406
 13.1.2 PFIs and Unknown Input Decoupling 408
 13.1.3 PFIs with Unknown Input Decoupling (PFIUID) 411
13.2 Fault Isolation Filter Design .. 412
 13.2.1 A Design Approach Based on the Duality to Decoupling Control 413
 13.2.2 The Geometric Approach 416
 13.2.3 A Generalized Design Approach 418
13.3 An Algebraic Approach to Fault Isolation 427
13.4 Fault Isolation Using a Bank of Residual Generators 431
 13.4.1 The Dedicated Observer Scheme (DOS) 432
 13.4.2 The Generalized Observer Scheme (GOS) 436
13.5 Notes and References ... 439

14 Fault Identification Schemes .. 441
14.1 Fault Identification Filter Schemes and Perfect Fault Identification 442
 14.1.1 Fault Detection Filters and Existence Conditions 442
 14.1.2 FIF Design with Measurement Derivatives 446
14.2 On the Optimal FIF Design .. 449
 14.2.1 Problem Formulation and Solution Study 449
 14.2.2 Study on the Role of the Weighting Matrix 451
14.3 Approaches to the Design of FIF .. 456
 14.3.1 A General Fault Identification Scheme 457
 14.3.2 An Alternative Scheme 457
 14.3.3 Identification of the Size of a Fault 458
 14.3.4 Fault Identification in a Finite Frequency Range 460
14.4 Fault Identification Using an Augmented Observer 461
14.5 An Algebraic Fault Identification Scheme 463
14.6 Adaptive Observer-Based Fault Identification 464
 14.6.1 Problem Formulation 464
 14.6.2 The Adaptive Observer Scheme 465
14.7 Notes and References 468

15 Fault Diagnosis in Feedback Control Systems and Fault-Tolerant
 Architecture .. 471
15.1 Plant and Control Loop Models, Controller and Observer
 Parameterizations ... 472
 15.1.1 Plant and Control Loop Models 472
 15.1.2 Parameterization of Stabilizing Controllers, Observers,
 and an Alternative Formulation of Controller Design 473
 15.1.3 Observer and Residual Generator Based Realizations
 of Youla Parameterization 475
 15.1.4 Residual Generation Based Formulation of Controller
 Design Problem .. 476
15.2 Residual Extraction in the Standard Feedback Control Loop
 and a Fault Detection Scheme 478
 15.2.1 Signals at the Access Points in the Control Loop 478
 15.2.2 A Fault Detection Scheme Based on Extraction of Residual
 Signals ... 479
15.3 2-DOF Control Structures and Residual Access 481
 15.3.1 The Standard 2-DOF Control Structures 481
 15.3.2 An Alternative 2-DOF Control Structure with Residual
 Access ... 483
15.4 On Residual Access in the IMC and Residual Generator Based
 Control Structures .. 485
 15.4.1 An Extended IMC Structure with an Integrated Residual
 Access .. 485
 15.4.2 A Residual Generator Based Feedback Control Loop 487
15.5 Notes and References 488

References .. 491
Index ... 499
Notation

∀ For all
∈ Belong to
⊂ Subset
∪ Union
∩ Intersection
≡ Identically equal
≈ Approximately equal
:= Defined as
⇒ Implies
⇔ Equivalent to
≫ (≪) Much greater (less) than
max (min) Maximum (minimum)
sup (inf) Supremum (infimum)

\(\mathbb{R} \) and \(\mathbb{C} \) Field of real and complex numbers
\(\mathbb{C}_+ \) and \(\overline{\mathbb{C}_+} \) Open and closed right-half plane (RHP)
\(\mathbb{C}_- \) and \(\overline{\mathbb{C}_-} \) Open and closed left-half plane (LHP)
\(\mathbb{C}_{j\omega} \) Imaginary axis
\(\mathbb{C}_1 \) and \(\overline{\mathbb{C}_1} \) Open and closed plane outside of the unit circle
\(\mathbb{R}^n \) Space of real \(n \)-dimensional vectors
\(\mathbb{R}^{n \times m} \) Space of \(n \) by \(m \) matrices
\(\mathcal{RH}_\infty, \mathcal{RH}_\infty^{n \times m} \) Denote the set of \(n \) by \(m \) stable transfer matrices, see [198] for definition
\(\mathcal{RH}_2, \mathcal{RH}_2^{n \times m} \) Denote the set of \(n \) by \(m \) stable, strictly proper transfer matrices, see [198] for definition
\(\mathcal{LH}_\infty, \mathcal{LH}_\infty^{n \times m} \) Denote the set of \(n \) by \(m \) transfer matrices, see [198] for definition
X^T
Transpose of X

X^\perp
Orthogonal complement of X

X^{-1}
Inverse of X

X^-
Pseudo-inverse of X (including left or right inverse)

$\text{rank}(X)$
Rank of X

$\text{trace}(X)$
Trace of X

$\text{det}(X)$
Determinant of X

$\lambda(X)$
Eigenvalue of X

$\bar{\sigma}(X)$ ($\sigma_{\text{max}}(X)$)
Largest (maximum) singular value of X

$\sigma(X)$ ($\sigma_{\text{min}}(X)$)
Least (minimum) singular value of X

$\sigma_i(X)$
The ith singular value of X

$\text{Im}(X)$
Image space of X

$\text{Ker}(X)$
Null space of X

$\text{diag}(X_1, \ldots, X_n)$
Block diagonal matrix formed with X_1, \ldots, X_n

$\text{prob}(a < b)$
Probability that $a < b$

$\mathcal{N}(a, \Sigma)$
Gaussian distribution with mean vector a and covariance matrix Σ

$x \sim \mathcal{N}(a, \Sigma)$
x is distributed as $\mathcal{N}(a, \Sigma)$

$\mathcal{E}(x)$
Mean of x

$\text{var}(x)$
Variance of x

$G(p)$
Transfer matrix, p is either s for a continuous-time system or z for a discrete-time system

$G^*(j\omega) = G^T(-j\omega)$
Conjugate of $G(j\omega)$

(A, B, C, D)
Shorthand for the state space representation

$\text{rank}(G(s))$
Normal rank of $G(s)$, see [105] for definition