Image and Video-Based Artistic Stylisation
This comprehensive book series embraces state-of-the-art expository works and advanced research monographs on any aspect of this interdisciplinary field.

Topics covered by the series fall in the following four main categories:

- Imaging Systems and Image Processing
- Computer Vision and Image Understanding
- Visualization
- Applications of Imaging Technologies

Only monographs or multi-authored books that have a distinct subject area, that is where each chapter has been invited in order to fulfill this purpose, will be considered for the series.

Volume 42

For further volumes:
www.springer.com/series/5754
Image and Video-Based Artistic Stylisation
Preface

“Computers are useless. They can only give you answers.”

Almost two hundred years ago, the advent of photography was heralded as the beginning of the end for traditional painting. Rather than rendering painting obsolete, the technology instead motivated a new era of abstraction in visual art, delivering—among many other movements—Impressionism, Futurism, and Cubism, which continue to inspire contemporary art. Similarly, the astonishing achievements in visual realism delivered by Computer Graphics have motivated new research into the rendering of non-photorealistic styles. Non-photorealistic Rendering (NPR) is now a firmly established field within Computer Graphics, spanning over two decades of research. With origins in artistic simulation and scientific visualization, NPR has now broadened to intersect computational photography, perceptual modelling and interaction design. NPR research regularly appears in top tier graphics conferences and journals, and has delivered commercial impact through digital photography and mobile applications, and through the creative industries.

This book assembles a catalogue of classical and contemporary techniques capable of transforming 2D footage—i.e. images and video—into synthetic artwork. This sub-discipline within NPR is often referred to in the literature as Artistic Rendering, and sometimes by the more specific title Artistic Stylization. Even limiting ourselves to the rendering of images and video primarily for aesthetic value, there has been a huge diversification and development of the field over the past decade—approximately the time since the last survey of the field was published.

One significant development has been the emergence of NPR as a truly multidisciplinary field; a focal point for the convergence of Computer Graphics, Computer Vision, Human Computer Interaction and perceptual Psychology. The convergence with Computer Vision is particularly relevant to this book’s topic of 2D artistic stylization. The increasing complexity and diversity in style demanded by techniques demands a correspondingly greater degree of sophistication in the parsing and extraction of information from source footage. In the mid-1990s when automated artistic stylization techniques began to emerge, there was a reliance upon
low-level image processing operators to guide the rendering process. In the early 2000s mid-level interpretation of imagery through image segmentation, perceptual salience measures, and more sophisticated filtering operators yielded improved style diversity and the robustness and temporal stability necessary to coherently stylize video. As the field matures it is now common to see a fusion of even more sophisticated image parsing, combined with careful interface design, recognizing the role of artistic stylization as a practical creative tool. Consequently in recent years, this research has begun to deliver commercial impact in major digital image and video manipulation products.

The structure of this book echoes this categorization of artistic stylization research. Part I focuses upon image stylization through the placement of marks (such as strokes, hatches and stipbles), or through non-linear filtering operators. This is arguably the largest area of 2D stylization research, and also one of the most active. Part II focuses on region-based techniques that require images to parsed into a visual structure via interactive or automated algorithms. Regions may be shaded using a variety of gradient effects, or packed with rendering primitives such as strokes, space filling curves, tiles and other marks. Furthermore, scene semantics may be derived from regions enabling specialised rendering to be applied e.g. to enable portrait rendering. Part III extends the discussion of both categories of stylization to video, and explores both low-level methods based on optical flow, and mid-level methods based on regions. In addition to processing real video into stylized animation, the issue of processing existing animations into other stylized forms is discussed. Finally, Part IV discusses the matter of evaluating NPR output. As the field of artistic stylization matures, key questions include how to assess the benefits of a new proposed approach, and how to assess the suitability of a particular approach to a particular requirement or scenario. In this book we present complementary perspectives on the matter of evaluating a rendering generated primarily for aesthetics. Finally, we discuss the emerging commercial impact of NPR “in the wild”; that is, the application of NPR to real world scenarios. Crucially this requires consideration of the users of NPR and its creative implications.

Picasso doubted the benefit of computers on the basis that they are merely powerful calculating machines. Yet research in our field has shown that, enabled by such machines, we can begin to ask new questions about art, computing, and their interaction. With advances in Vision, Machine Learning, and Human Factors merging into this maturing sub-discipline with Computer Graphics, this is an exciting time to be working in NPR.

Cardiff University, UK
Paul Rosin
University of Surrey, UK
John Collomosse
Acknowledgements

We would like to thank Reinhard Klette for encouraging us to start working on this book, and also Jan Eric Kyprianidis whose help and technical expertise enabled us to complete it.
Contents

Part I Strokes, Marks and Filters for Artistic Stylization

1 Stroke Based Painterly Rendering 3
 David Vanderhaeghe and John Collomosse

2 A Brush Stroke Synthesis Toolbox 23
 Stephen DiVerdi

3 Halftoning and Stippling ... 45
 Oliver Deussen and Tobias Isenberg

4 Non-photorealistic Shading and Hatching 63
 Victor Ostromoukhov

5 Artistic Stylization by Nonlinear Filtering 77
 Jan Eric Kyprianidis

6 NPR for Traditional Artistic Genres 103
 Eugene Zhang

Part II Stylization from Structure

7 Region-Based Abstraction ... 125
 David Mould

8 Gradient Art: Creation and Vectorization 149
 Pascal Barla and Adrien Bousseau

9 Depiction Using Geometric Constraints 167
 Craig S. Kaplan

10 Artificial Mosaic Generation 189
 Giovanni Puglisi and Sebastiano Battiato

11 Non-photorealistic Rendering with Reduced Colour Palettes 211
 Yu-Kun Lai and Paul L. Rosin
12 Artistic Rendering of Portraits 237
Mingtian Zhao and Song-Chun Zhu

Part III Stylized Animations

13 Temporally Coherent Video Stylization 257
Pierre Bénard, Joëlle Thollot, and John Collomosse

14 Computer-Assisted Repurposing of Existing Animations 285
Daniel Sýkora and John Dingliana

Part IV Evaluation and Impact of Artistic Stylization

15 Evaluating and Validating Non-photorealistic and Illustrative Rendering ... 311
Tobias Isenberg

16 Don’t Measure—Appreciate! NPR Seen Through the Prism of Art History ... 333
Peter Hall and Ann-Sophie Lehmann

17 NPR in the Wild ... 353
Holger Winnemöller

Erratum to: Artistic Rendering of Portraits E1
Mingtian Zhao and Song-Chun Zhu

References .. 375

Index .. 395
Contributors

Pascal Barla Inria Bordeaux, Talence Cedex, France
Sebastiano Batttiato University of Catania, Catania, Italy
Pierre Bénard University of Toronto, Toronto, ON, Canada
Adrien Bousseau Inria Sophia Antipolis, Sophia Antipolis Cedex, France
John Collomosse Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, Surrey, UK
Oliver Deussen Dept. of Computer and Information Science, University of Konstanz, Konstanz, Germany
John Dingliana Trinity College Dublin, Dublin 2, Ireland
Stephen DiVerdi Adobe Systems Inc., San Francisco, CA, USA
Peter Hall Department of Computer Science, University of Bath, Bath, UK
Tobias Isenberg INRIA Saclay, Orsay, France
Craig S. Kaplan University of Waterloo, Waterloo, Ontario, Canada
Jan Eric Kyprianidis Hasso-Plattner-Institut, University of Potsdam, Potsdam, Germany
Yu-Kun Lai School of Computer Science and Informatics, Cardiff University, Cardiff, UK
Ann-Sophie Lehmann Department of Media and Culture Studies, University of Utrecht, Utrecht, The Netherlands
David Mould Carleton University, Ottawa, Canada
Victor Ostromoukhov CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
Giovanni Puglisi University of Catania, Catania, Italy
Paul L. Rosin School of Computer Science and Informatics, Cardiff University, Cardiff, UK

Daniel Sýkora FEE, DCGI, CTU in Prague, Praha 2, Czech Republic

Joëlle Thollot LJK, INRIA, Grenoble University, Saint Ismier, France

David Vanderhaeghe IRIT, Université de Toulouse, Toulouse CEDEX 9, France

Holger Winnemöller Adobe Systems, Inc., Seattle, USA

Eugene Zhang School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA

Mingtian Zhao University of California, Los Angeles, CA, USA

Song-Chun Zhu University of California, Los Angeles, CA, USA