ESSENTIAL IVF

Basic Research and Clinical Applications
TABLE OF CONTENTS

List of Contributors ...ix

Preface ...xv

CHAPTER ONE

THE SYNTHETIC AND SECRETORY BEHAVIORS (NONSTEROIDAL)
OF OVARIAN FOLLICULAR GRANULOSA CELLS: PARALLELS
TO CELLS OF THE ENDOTHELIAL CELL LINEAGE
Michael Antczak ...1

CHAPTER TWO

OOCYTE-GRANULOSA CELL INTERACTIONS
David Albertini ..43

CHAPTER THREE

PERI-FOLLICULAR VASCULARITY: A MARKER OF FOLLICULAR
HETEROGENEITY AND OOCYTE COMPETENCE AND A PREDICTOR
OF IMPLANTATION IN ASSISTED CONCEPTION CYCLES
Linda Gregory ...59

CHAPTER FOUR

DO BIOCHEMICAL PREDICTORS OF IVF OUTCOME EXIST?
Anthony Michael ..81

CHAPTER FIVE

GENETICS OF MALE INFERTILITY: EVOLUTION OF THE X
AND Y CHROMOSOME AND TRANSMISSION OF MALE
INFERTILITY TO FUTURE GENERATIONS
Sherman Silber ..111

CHAPTER SIX

SPERM ANALYSIS AND PREPARATION UPDATE
Martine Nijs and Willem Ombelet ...151
CHAPTER SEVEN

PREPARATION OF SPERM FRACTIONS AND INDIVIDUAL SPERM WITH LOW LEVELS OF CHROMOSOMAL ANEUPLOIDIES FOR IVF AND ICSI

Tamas Kovacs, Attila Jakab, Ertug Kovanci,
Zoltan Zavaczki, Denny Sakkas and Gabor Huszar

CHAPTER EIGHT

MATERNAL AGE AND OOCYTE COMPETENCE

Ursula Eichenlaub-Ritter and Fengyun Sun

CHAPTER NINE

GENETIC DIAGNOSIS OF METAPHASE II OOCYTES

Yury Verlinsky and Anver Kuliev

CHAPTER TEN

OOCYTE COMPETENCE AND IN VITRO MATURATION

Jennifer Cavilla and Geraldine Hartshorne

CHAPTER ELEVEN

WHAT IS THE ROLE OF MITOCHONDRIA IN EMBRYO COMPETENCY?

Carol Brenner

CHAPTER TWELVE

FUNDAMENTALS OF THE DESIGN OF CULTURE MEDIA THAT SUPPORT HUMAN PREIMPLANTATION DEVELOPMENT

John Biggers

CHAPTER THIRTEEN

THE BIOLOGICAL BASIS OF OOCYTE AND EMBRYO COMPETENCE: MORPHODYNAMIC CRITERIA FOR EMBRYO SELECTION IN IN-VITRO FERTILIZATION

Lynette Scott
CHAPTER FOURTEEN

THE ENIGMA OF FRAGMENTATION IN EARLY HUMAN EMBRYOS: POSSIBLE CAUSES AND CLINICAL RELEVANCE
Jonathan Van Blerkom

CHAPTER FIFTEEN

BLASTOCYST TRANSFER UPDATE: PROS AND CONS
Anna Veiga, José Torelló, Irene Boiso, Pedro Barri, and Yves Ménézo

CHAPTER SIXTEEN

ASSISTED HATCHING IN CLINICAL IVF
Graham Wright and Amy Jones

CHAPTER SEVENTEEN

PROSPECTS FOR OBTAINING VIABLE OCYTES FROM CRYOPRESERVED OVARIAN TISSUE
Helen Picton

CHAPTER EIGHTEEN

CRYOPRESERVATION IN HUMAN ASSISTED REPRODUCTION
Yves Ménézo and Pierre Guerin

CHAPTER NINETEEN

REDUCING THE NUMBER OF EMBRYOS TO TRANSFER AFTER IVF/ICSI
Jan Gerris

CHAPTER TWENTY

CAN AND SHOULD HUMAN EMBRYOS BE “RESCUED” FROM DEVELOPMENTAL DEMISE? METHODS AND BIOLOGICAL BASIS
Jim Cummins
CHAPTER TWENTY-ONE

DETERMINATION OF ENDOMETRIAL STATUS AND THE IMPLANTATION WINDOW

Markku Seppälä and Bruce Lessey.................................577

INDEX...611
CONTRIBUTORS

David Albertini
Department of Anatomy and Cell Biology
Tufts University School of Medicine
Boston, MA.

Michael Antczak
Department of Molecular Cellular and Developmental Biology
University of Colorado, Boulder, CO.

Pedro Barri
Reproductive Medicine Service
Institut Universitari Dexeus.
Barcelona, Spain

John Biggers
Department of Cell Biology
Harvard Medical School, Boston, MA.

Irene Boiso
Reproductive Medicine Service
Institut Universitari Dexeus.
Barcelona, Spain

Carol Brenner
Department of Biological Sciences, University of New Orleans;
Audubon Center for Research of Endangered Species, New Orleans, LA.
The Jones Institute for Reproductive Medicine, Department of Obstetrics and
Gynecology, Eastern Virginia Medical School, Norfolk, VA.

Jennifer Cavilla
Centre for Reproductive Medicine, University Hospitals Coventry and
Warwickshire NHS Trust, Coventry CV2 2DX, UK, and Department of
Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.

Jim Cummins
Division of Veterinary and Biomedical Sciences
Murdoch University
Western Australia 6150
Ursula Eichenlaub-Ritter
Universität Bielefeld
Fakultät für Biologie
Gentechnologie/Mikrobiologie
33501 Bielefeld, Germany

Jan Gerris
Center for Reproductive Medicine
Middelheim Hospital
Antwerp, Belgium

Linda Gregory
Cardiff Assisted Reproduction Unit
University Hospital of Wales,
Heath Park, Cardiff
Wales, U.K.

Pierre Guerin
Ecole Nale Vétérinaire
69 Marcy L’Etoile et INSA, Biologie Bt 406
69621 Vileurbanne Cedex, France

Attila Jakab
The Sperm Physiology Laboratory, Department of Obstetrics and
Gynecology, Yale University School of Medicine, 333 Cedar Street, New
Haven, CT.

Geraldine Hartshorne
Centre for Reproductive Medicine, University Hospitals Coventry and
Warwickshire NHS Trust, Coventry CV2 2DX, UK, and Department of
Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.

Gabor Huszar
The Sperm Physiology Laboratory, Department of Obstetrics and
Gynecology, Yale University School of Medicine, 333 Cedar Street, New
Haven, CT.

Amy Jones
Reproductive Biology Associates, Atlanta, GA.

Tamas Kovacs
The Sperm Physiology Laboratory, Department of Obstetrics and
Gynecology, Yale University School of Medicine, 333 Cedar Street, New
Haven, CT.
Ertug Kovanci
The Sperm Physiology Laboratory, Department of Obstetrics and
Gynecology, Yale University School of Medicine, 333 Cedar Street, New
Haven, CT.

Anver Kuliev
Reproductive Genetics Institute
Chicago, IL.

Bruce Lessey
Division of Reproductive Endocrinology and Infertility, University of North
Carolina at Chapel Hill, NC.

Anthony Michael
Department of Biochemistry & Molecular Biology, Royal Free & University
College Medical School, University College London, Rowland Hill Street,
London NW3 2PF, U.K.

Yves Ménézo
Laboratoire Marcel Mérieux,
1 rue Laborde, 69500 Bron, France

Martine Nijs
Schoysman Infertility Management Foundation
Van Helmont Hospital, Vaartstrat 42,
1800 Vilvoorde, Belgium

Williem Ombelet
Genk Institute for Fertility Technology
Campus St. Jan, Genk, Belgium

Helen Picton
Academic Unit of Paediatrics, Obstetrics and Gynaecology
University of Leeds, Leeds, U.K., LS2 9NS

Markku Seppälä
Department of Obstetrics and Gynecology, Helsinki University Central
Hospital, Helsinki, 00029 HUS, Finland
Denny Sakkas
The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT.

Lynette Scott
Fertility Center of New England
20 Pond Meadow Drive
Reading, MA.

Sherman Silber
Infertility Center of St. Louis
St. Luke's Hospital
224 South Woods Mill Road, Suite 730
St. Louis, MO.

Fengyun Sun
Universität Bielefeld
Fakultät für Biologie
Gentechnologie/Mikrobiologie
33501 Bielefeld, Germany

José Torelló
Reproductive Medicine Service
Institut Universitari Dexeus.
Barcelona, Spain

Jonathan Van Blerkom
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO.
Colorado Reproductive Endocrinology, Rose Medical Center, Denver, CO.

Anna Veiga
Reproductive Medicine Service
Institut Universitari Dexeus.
Barcelona, Spain

Yury Verlinsky
Reproductive Genetics Institute
Chicago, IL.

Graham Wright
Reproductive Biology Associates, Atlanta, GA.
Zoltan Zavaczki
The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT.
PREFACE

There is no clearer testament to the importance and efficacy of in vitro fertilization in the treatment of the infertile patient than the fact that over one million babies have been born since its clinical introduction in 1978. The success of this worldwide endeavor has evolved to treat some of the formerly most intractable forms of infertility and requires individuals with different skills and insights whose activities are often compartmentalized into clinical, laboratory and research functions. The intent of Essential IVF is to present current issues in clinical IVF that encompass the varied activities of those engaged in this enterprise. By integrating clinical, basic research and laboratory-related aspects of human reproduction, readers with diverse interests should obtain a more complete understanding of the impact, importance and inter-relatedness of each in the progress of infertility treatment, and an appreciation of whether emerging technologies will or should contribute to this progress in the near future. The topics selected for this volume include research that has begun to explain the origins of differential follicular, gamete, embryo and uterine competence, and specific laboratory procedures and protocols that may have important clinical implications for the generation of developmentally viable embryos.

Human embryo research over the past 25 years has not only confirmed that the developmental potential of each embryo is unique, but more importantly, demonstrated how genetic and nongenetic factors for sperm and oocyte determine embryo competence well before fertilization. Several chapters deal with the origins of normal and compromised gametes and how those with high competence can be identified and isolated for fertilization. While the generation of high competence embryos is an essential aspect of infertility treatment with IVF, so also is the current emphasis on the avoidance of higher order gestations by limiting the number of embryos transferred. Here, chapters that discuss criteria used for progressive noninvasive evaluations of embryo development provide a current indication of the utility of morphology in competence assessment, and present outcome based results that indicate patient- and cycle-specific characteristics in which the transfer of one or two embryos should be considered. Several chapters describe research and clinical efforts on follicle and preantral oocyte culture and cryopreservation to preserve the fertility of certain patients, while others discuss whether invasive manipulations such as ooplasmic transfer and assisted hatching have merit in the treatment of the infertile patient.

The imperative to constantly improve outcome is the engine that drives this field of reproductive medicine, an engine fueled by the frequent introduction of major changes in clinical and laboratory protocols, often before their presumed benefits have been fully validated or a solid biological foundation established. In the same respect, whether current practices remain valid years after their introduction is not often addressed and in many IVF
programs, certain practices persist long after their actual efficacy has been questioned. For chapters that describe current practices in the laboratory management of embryos, the authors critically review the rationale, design and validity of studies that have been reported to improve outcome. These reviews should be of particular relevance to clinicians and laboratory personnel as they question whether existing protocols and suggested changes are currently warranted and if so, whether they should be applied universally or on a selected basis.

Through the efforts of the contributors, this volume provides both historical and current perspectives on practices common in human IVF. While no specific consensus leading to a ‘standardization’ of clinical and laboratory protocols was intended or is evident, owing to the unique and different experiences of each author, the chapters do provide guidance with which existing and newer protocols of gamete and embryo selection, culture, and competence assessment can be evaluated. The basic research on follicular, embryonic and uterine biology provides a glimpse of ongoing efforts directed at the identification of cellular, biochemical and physiological determinants suggested to be associated with normal gamete and embryo developmental potential and to be predictive of outcome. The possibility of rescuing developmentally compromised oocytes and embryos, as well as the cryopreservation and culture of small follicles and their corresponding oocytes is at an experimental stage. However, it is clear from the descriptions of current research efforts that technical and biological foundations for future clinical application are being established.

While it is apparent that basic and clinical studies described in this book come from very different directions and perspectives, they have two common goals, improving outcome for the infertile patient and the generation of healthy children. In this context, all involved in clinical IVF are cognizant of the fact that the patients being treated are both the infertile couple and the intended offspring, and it is to the achievement of these dual goals that the information presented in this book is intended.

Jonathan Van Blerkom
Boulder, Colorado

Linda Gregory
Cardiff, Wales, UK