Nitric Oxide (NO) and Cancer

Prognosis, Prevention, and Therapy
Preface

The Nobel Price in Physiology and Medicine was awarded in 1998 to Drs. Furchgott, Ignarro, and Murad for their discoveries concerning the “Nitric oxide as a signaling molecule in the cardio-vascular system.” Nitric oxide (NO) is a short-lived, endogenously produced gas that acts as a signaling molecule in the body. NO-induced signaling events within the cell producing it and its diffusibility to other cells has led to the discovery of many other physiological functions in many other types of cells including cancer cells. Noteworthy, nitroglycerin, invented by Alfred Nobel, has been used for the treatment of chest pain and associated cardiovascular diseases and has now started to be used in clinical studies including cancer (see below).

Several reports have addressed the roles of tumor-expressing iNOS and NO donors on tumor behavior in vivo. Data reported demonstrated the contrasting roles of NO mediating either tumor promotion or tumor regression. In an effort to sort out the roles of iNOS and NO in cancer, the “First International Conference on Nitric Oxide and Cancer” was held in Paris, France, November 26–28, 2007. This conference was attended by leaders in the field and Dr. Wink and collaborators presented convincing data demonstrating that the levels of NO dictate the outcome of tumor cell response. This conference resulted in the publication of a special issue “Nitric Oxide and Cancer: Clinical and Therapeutic Implications” (Nitric Oxide, Vol 8/19, September 2008). The rapid advances made in the field of nitric oxide and cancer were the impetus to develop this special volume summarizing the current status of NO and cancer to be published by Springer and contains over 25 chapters that have been contributed by leaders in this field.

This volume was divided arbitrarily into seven parts, namely (I) General overview, (II) Nitric Oxide and the pathogenesis of cancer, (III) Dual roles of NO in protecting against or inducing cell death, (IV) Role of NO in metastasis, (V) Nitric oxide as a sensitizing agent for chem-radio-immunotherapy, (VI) Prognostic applications of iNOS in various cancers, and (VII) The application of nitric oxide as a therapeutic. Briefly below, I will discuss the highlights presented by each contributor in each section.

In Part I, Drs. Harris, Wink, and colleagues from the National Cancer Institute present an overview of the field and provide chemical and molecular analyses
underlying the pleiotropic activities observed with NO in cancer. They also discuss the roles of NO in the modulation of host immune responses and suggest novel strategies to develop new applications of NO as a therapeutic drug. In Part II, Drs. Counter, Chadhuri, and Masini describe the role of NO in the pathogenesis of cancer. Dr. Counter discusses the role of eNOS in tumorigenesis through the activation of the Ras family of proteins. Several experimental models are presented to corroborate their findings. They also raise several questions that need to be explored regarding the underlying mechanism(s) of the eNOS/Raf interaction in tumors. They also suggest novel targets for therapeutic interventions and show an inhibitor of eNOS inducing an anti-tumor activity. Dr. Chadhuri also describes the multifaceted roles of NO in cancer, namely, in cell growth and apoptosis and highlights several other gene products that are regulated by NO. Dr. Masini discusses the dual roles of NO in cancer as well. In addition, the coordinate expression of iNOS, COX2, and VEGF in certain tumor cells are shown to promote new blood vessel formation and tumor growth. In addition, contrasting findings are presented and overall the iNOS/COX2 pathway is considered as target for cancer treatment. In Part III, five contributors review the dual roles of NO in protecting or inducing cell death. Dr. Rojanasakul and colleagues describe the role of S-nitrosylation by NO in cell death. In addition, they review the involvement of NO in the tumor microenvironment and mechanisms of tumor progression toward metastasis. The role of NO-mediated cysteine nitrosylation on carcinogenesis is also discussed. Dr. Soma reviews the recent literature and presents several schematic and illustrative diagrams summarizing the various pathways that regulate the various pro- and anti-apoptotic roles of NO. Dr. Chung and colleagues review the reported studies and theirs on the effects of NO concentrations, sources, half-life, chemical interactions, and the microenvironment all of which would influence the outcome. Dr. Weinberg reviews the dual roles of NO and emphasizes the role of iNOS overexpression in hematological malignancies, particularly CLL. In these tumor cells the overexpression of iNOS is protective and inhibition of iNOS results in significant cell death in CLL. It is suggested that overexpression of iNOS results in NO-induced inhibition of caspases which leads to resistance to apoptotic stimuli. It is suggested that the use of specific inhibitors targeting iNOS in this cancer may be therapeutic. Dr. Kolb and colleagues also describe the anti-apoptotic role of NO in CLL. The overexpression of iNOS in CLL is regulated by the toll-like receptor 7 (TLR-7). While NO exerts contrasting effects on apoptosis in many tumor cells, however, in CLL it is protective against apoptosis. In Part IV, Drs. Estrala and Baritaki describe the role of NO in metastasis. Dr. Estrala reviews the intravascular origin of metastasis, the cytotoxic effect of NO derived from the vascular endothelials in the tumor microenvironment and tumor survival. Also, the role of anti-apoptotic gene products including NOS in the regulation of metastasis as well as the role of NO in the regulation of angiogenic factors is reviewed. Dr. Baritaki, in contrast, describes a novel mechanism of tumor cell inhibition of metastasis by NO donors. Treatment of metastatic human prostate cancer cell lines with the use of high levels of the NO donor, DETANONate, results in the inhibition of constitutive survival pathway such as NF-kB and downstream the metastasis-inducer transcription factor,
Snail, and inhibition of the epithelial–mesenchymal transition (EMT). Also, in this chapter, she describes NO-induced expression of the metastasis suppressor gene product, RKIP. This study suggests the potential therapeutic application of NO donors in the regulation of metastasis. In Part V, four contributors discuss the role of NO as a sensitizing agent to reverse tumor cell resistance to cytotoxic therapies. Dr. Siejo discusses the role of NO as a sensitizing agent for radio-chemo- and immuno-therapy. Irradiated tumor cells result in the release of NO and ROS that potentiate the cytotoxic effect of radiation. Likewise, the addition of NO donors to irradiated tumor cells potentiates the cytotoxic effect. Similar findings are discussed with respect to tumor therapy and NO. Dr. Jeannin discusses the primary role of NO as an enhancer for cancer therapy. In this review, he also discusses the mechanism by which NO exerts its sensitizing effect to both chemo- and immuno-therapy. Dr. Effert reports on the resistance induced in cancer cells by hypoxia and how NO inhibits the transcription factor, HIF-1alpha. The inhibition of HIF-1alpha results in the inhibition of many resistance gene products and, hence, the tumor cells become sensitized to chemotherapeutic drug-induced apoptosis. Dr. Garbán reviews the role of NO in reversing tumor cell resistance to cytotoxic drugs. He postulates that NO induces oxygenation of tumor cells by increasing blood flow and resulting in the increase of the delivery of the cytotoxic drug to the tumor. Further, NO modulates the host immune response by regulating the expression of death receptor on the tumor cells and, thus, potentiating their sensitivity to host-immune cytotoxic lymphocytes. In addition, Dr. Garbán presents his expert opinion on the above chapters. In Part VI, four contributors review the prognostic significance of iNOS expression in various cancers. Drs. Ekmekcioglu and Grimm present the prognostic significance of iNOS in human melanoma. Their findings demonstrate that iNOS overexpression in melanoma is an independent prognostic factor for Stage III melanoma. Drs. Pascale and Feo review the molecular increase in the alteration of iNOS and NO and, in particular, the high level of iNOS in a subgroup of hepatocellular carcinoma and correlation with poor prognosis. Drs. Matsumoto and colleagues describe the prognostic significance of iNOS in nasopharyngeal cancer. They demonstrate that overexpression of iNOS is associated with p53 overexpression but not associated with prognosis. They suggest that iNOS contributes to tumorigenesis but not to tumor progression. Drs. Hiraku and Kawanishi discuss the overexpression of 8-nitroguanine. In patients with nasopharyngeal carcinoma infected with EBV, the prognostic significance of 8-nitroguanine is reported. They also found that in patients with soft tissue tumors strong 8-nitroguanine formation was associated with poor prognosis. In Part VII, the therapeutic application of NO in cancer is reviewed by six contributors. Drs. Thatcher and Anand describe the therapeutic potential and cancer prevention of nitric oxide-releasing molecules. They review the activities of various classes of NO donors, and in particular, the new generations of NORMs, nitric oxide redox molecules. Drs. Hirst and Robson discuss the anti-tumor properties of NO donors in both experimental and clinical trials in patients. They also describe the physiological effects as single agents or in combination with other agents. They summarize in a table format all the reported studies undertaken to-date by nitric oxide against
tumor cells, both in vitro and in vivo. Drs. Bonavida and associates describe the role of various NO donors and their mechanisms of action on the reversal of tumor cell resistance to various cytotoxics. They discuss the beneficial effects of NO donors as sensitizing agents and that they can be considered as universal sensitizing agents when compared to specific targeted agents. NO donors perturb many survival anti-apoptotic pathways in the tumor cells and act upstream to various pathways in contrast to various specific inhibitors which act downstream. Drs. Nicoletti and colleagues describe an NO donor compound, GTT-27NO, as a tumor-specific cytotoxic drug and its ability to reverse resistance of tumor cells. They also discuss the induction by GTT-27NO of ROS, RNS, and nitration of tyrosine residues. They suggest the potential application of this drug in the clinic. Drs. Yasuda and colleagues describe the therapeutic application of NO in in vitro models and in humans. They describe the current clinical trials of the use of nitroglycerin in combination with cytotoxic drugs in patients with non-small cell lung carcinoma. Both randomized and non-randomized studies are described. Dr. Rustum describes his opinion of the preceding chapters in Part VII and also describes his own studies with the compound SE-methyl selenium and its ability to inhibit HIF-1alpha.
Acknowledgments

I wish to acknowledge the assistance of several individuals who have contributed in the preparation of this volume. My assistants at UCLA, namely, Erica Keng, Tiffany Chin, Kerry Choy, and Anna Sahakyan, were patient and I am grateful for their help in revising the manuscripts as per guidelines. In addition, I am indebted to Rachel Warren and Brian Halm from Springer for advice and coordination throughout the development of this volume. I also acknowledge the assistance of the UCLA Johnson Comprehensive Cancer Center and their staff. The support of my wife and two sons and their sacrifice are greatly acknowledged during the preparation of this volume.

Los Angeles, CA, USA

Benjamin Bonavida
Contents

Part I General Overview

1 Nitrile Oxide and Cancer: An Overview 3
 Robert Cheng, Lisa A. Ridnour, Sharon A. Glynn,
 Christopher H. Switzer, Wilmarie Flores-Santana, Perwez
 Hussain, Douglas D. Thomas, Stefan Ambs, Curtis C. Harris,
 and David A. Wink

Part II Nitric Oxide and the Pathogenesis of Cancer

2 A Role for eNOS in Oncogenic Ras-Driven Cancer 23
 David F. Kashatus and Christopher M. Counter

3 Dual Role of Nitric Oxide in Cancer Biology 39
 Shehla Pervin, Rajan Singh, Suvajit Sen,
 and Gautam Chaudhuri

4 Nitric Oxide Expression in Cancer 59
 Emanuela Masini, Fabio Cianchi, Rosanna Mastroianni,
 and Salvatore Cuzzocrea

Part III Dual Roles of Nitric Oxide in Protecting or Inducing
 Cell Death

5 S-Nitrosylation – How Cancer Cells Say NO to Cell Death 85
 Anand Krishnan V. Iyer, Neelam Azad, Liying Wang,
 and Yon Rojanasakul

6 Cytotoxic and Protective Activity of Nitric Oxide in Cancers .. 103
 Gen-Ichiro Soma, Chie Kohchi, and Hiroyuki Inagawa

7 Cytotoxic/Protective Activity of Nitric Oxide in Cancer 133
 Eun-Kyeong Jo, Hyun-Ock Pae, Yong Chul Lee,
 and Hun-Taeg Chung

8 Nitric Oxide and Life or Death of Human Leukemia Cells 147
 J. Brice Weinberg
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Inhibition of Apoptosis by Endogenous Nitric Oxide in Chronic Lymphocytic Leukaemia</td>
<td>169</td>
<td>Christian Billard, Claire Quiney, and Jean-Pierre Kolb</td>
</tr>
<tr>
<td></td>
<td>Part IV Role of Nitric Oxide in Metastasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nitric Oxide: A Rate-Limiting Factor for Metastases Development</td>
<td>189</td>
<td>Angel Ortega, Salvador Mena, and José M. Estrela</td>
</tr>
<tr>
<td>11</td>
<td>Nitric Oxide Inhibits Tumor Cell Metastasis via Dysregulation of the NF-κB/Snail/RKIP Loop</td>
<td>209</td>
<td>Stavroula Baritaki and Benjamin Bonavida</td>
</tr>
<tr>
<td></td>
<td>Part V Nitric Oxide as a Sensitizing Agent for Chem-Radio-Immunotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sensitizing Effect of Nitric Oxide to Cytotoxic Stimuli</td>
<td>237</td>
<td>Peter Siesjö</td>
</tr>
<tr>
<td>13</td>
<td>Nitric Oxide Is a Promising Enhancer for Cancer Therapy</td>
<td>253</td>
<td>Marion Cortier, Lissbeth Leon, Néjia Sassi, Catherine Paul, Jean-François Jeannin, and Ali Bettaieb</td>
</tr>
<tr>
<td>14</td>
<td>Role of Nitric Oxide for Modulation of Cancer Therapy Resistance</td>
<td>265</td>
<td>Thomas Efferth</td>
</tr>
<tr>
<td>15</td>
<td>Breaking Resistance: Role of Nitric Oxide in the Sensitization of Cancer Cells to Chemo- and immunotherapy</td>
<td>283</td>
<td>Hermes J. Garbán</td>
</tr>
<tr>
<td></td>
<td>Part VI Prognostic Significance of NOS and NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Prognostic Significance of iNOS in Human Melanoma</td>
<td>293</td>
<td>Suhendan Ekmekcioglu and Elizabeth A. Grimm</td>
</tr>
<tr>
<td>17</td>
<td>Prognostic Significance of iNOS in Hepatocellular Carcinoma</td>
<td>309</td>
<td>Rosa M. Pascale, M. Frau, and Francesco Feo</td>
</tr>
<tr>
<td>18</td>
<td>Prognostic Significance of iNOS in Esophageal Cancer</td>
<td>329</td>
<td>Manabu Matsumoto, Yuji Ohtsuki, and Mutsuo Furihata</td>
</tr>
<tr>
<td>19</td>
<td>Prognostic Significance of Nitrative DNA Damage in Infection- and Inflammation-Related Carcinogenesis</td>
<td>341</td>
<td>Yusuke Hiraku and Shosuke Kawanishi</td>
</tr>
</tbody>
</table>
Part VII Therapeutic Applications of Nitric Oxide

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Nitric Oxide-Releasing Molecules for Cancer Therapy and Chemoprevention</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>S. Anand and Gregory R.J. Thatcher</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Nitric Oxide: Monotherapy or Sensitiser to Conventional Cancer Treatments?</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>David G. Hirst and Tracy Robson</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Therapeutic Applications of Nitric Oxide for Malignant Tumor in Animal Models and Human Studies</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Hiroyasu Yasuda, Kazuhiro Yanagihara, Katsutoshi Nakayama, Tadashi Mio, Takahiko Sasaki, Masanori Asada, Mutsuo Yamaya, and Masanori Fukushima</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>(S,R)-3-Phenyl-4,5-dihydro-5-isoxazole acetic acid–Nitric Oxide (GIT-27NO) – New Dress for Nitric Oxide Mission</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>Sanja Mijatovic, Danijela Maksimovic-Ivanic, Marco Donia, Stanislava Stosic-Grujicic, Gianni Garotta, Yousef Al-Abed, and Ferdinando Nicoletti</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Nitric Oxide Donors Are a New Class of Anti-cancer Therapeutics for the Reversal of Resistance and Inhibition of Metastasis</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>Benjamin Bonavida, Stavroula Baritaki, Sara Huerta-Yepez, Mario I. Vega, Ali R. Jazirehi, and James Berenson</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Role of Inducible Nitric Oxide Synthase (iNOS) in Regulation of Nitric Oxide (NO) Production and Stabilization of HIF-1α: Potential Role of Se-Methylselenocysteine (MSC), an Antioxidant Multi-targeted Small Molecule</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>Sreenivasulu Chintala, Shousong Cao, and Youcef M. Rustum</td>
<td></td>
</tr>
</tbody>
</table>

Subject Index | 489
Contributors

Yousef Al-Abed Laboratory of Medicinal Chemistry, North Shore Long Island Jewish Health System, New Hyde Park, NY, USA

Stefan Ambs Radiation Biology Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

S. Anand Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA

Masanori Asada Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan

Neelam Azad Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA

Stavroula Baritaki Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Le Conte Avenue, Los Angeles, CA, 90095–1747, USA

James Berenson Hematology/Oncology, Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA

Ali Bettaieb Laboratory of Cancer Immunology and Immunotherapy, Université de Bourgogne, EPHE/INSERM U866, 7 bd Jeanne d’Arc, Dijon 21079, France

Christian Billard Centre de Recherche des Cordeliers, UMRS 872 INSERM/University Pierre et Marie Curie/University Paris Descartes, Paris, France

Benjamin Bonavida Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Le Conte Avenue, Los Angeles, CA, 90095-1747, USA

Shousong Cao Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
Gautam Chaudhuri Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA

Robert Cheng Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Sreenivasulu Chintala Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

Hun-Taeg Chung School of Biological Sciences, Ulsan University College of Natural Sciences, Daehackrhu 102, Namgu, Ulsan 680–749, Republic of Korea

Fabio Cianchi Department of General Surgery, Medical School, University of Florence, Florence, Italy

Marion Cortier Laboratoire d’immunologie et immunothérapie des cancers, Université de Bourgogne, EPHE/Inserm, U866, Dijon F-21000, France

Christopher M. Counter Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA

Salvatore Cuzzocrea Institute of Pharmacology, University of Messina, Messina, Italy

Marco Donia Department of Biomedical Sciences, University of Catania, Catania, Italy

Thomas Efferth Department of Phatmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany

Suhendan Ekmekcioglu Department of Experimental Therapeutics, Unit 362, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA

José M. Estrela Department of Physiology, University of Valencia, 15 Av. Blasco Ibáñez, Valencia, 46010, Spain

Francesco Feo Division of Experimental Pathology and Oncology, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy

Wilmarie Flores-Santana Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA

M. Frau Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy

Masanori Fukushima Outpatient Oncology Unit, Kyoto University Hospital, Kyoto 606-8507, Japan

Mutsuo Furihata Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
Hermes J. Garbán Division of Dermatology, Department of Medicine, LA BioMed Research Institute at Harbor-UCLA Medical Center, “David Geffen” School of Medicine at the University of California, Los Angeles, CA 90502, USA; UCLA’s Jonsson Comprehensive Cancer Center, Los Angeles, CA 90502, USA

Gianni Garotta GaNiAl Immunotherapeutics Inc., Wilmington, DE, USA

Sharon A. Glynn Laboratory of Human Carcinogenesis, Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Elizabeth A. Grimm Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA

Curtis C. Harris Radiation Biology Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Yusuke Hiraku Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan; Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan

David G. Hirst School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK

Sara Huerta-Yepez Unidad de Investigacion en Enfermedad des Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City, Mexico

Perwez Hussain Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Hiroyuki Inagawa Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kida-gun, Kagawa 761-0793, Japan; Macrophi Inc., Hayashi-cho, Takamatsu-shi, Kagawa 761-0301, Japan

Anand Krishnan V. Iyer Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, 23668, USA

Ali R. Jazirehi Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Le Conte Avenue, Los Angeles, CA, 90095-1747, USA

Jean-François Jeannin Laboratory of Cancer Immunology and Immunotherapy, Université de Bourgogne, EPHE/INSERM U866, 7 bd Jeanne d’Arc, Dijon 21079, France

Eun-Kyeong Jo Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 301–747, Republic of Korea
David F. Kashatus Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA

Shosuke Kawanishi Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan; Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan

Jean-Pierre Kolb Centre de Recherche des Cordeliers, UMRS 872 INSERM/University Pierre et Marie Curie/University Paris Descartes, 15 rue de l’Ecole de Médecine, Paris cedex 06 75270, France

Chie Kohchi Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kida-gun, Kagawa 761-0793, Japan; Macrophi Inc., Hayashi-cho, Takamatsu-shi, Kagawa 761-0301, Japan

Yong Chul Lee Department of Internal Medicine and Airway Remodeling Laboratory, Chonbuk National University Medical School, Jeonju 570-752, Republic of Korea

Lissbeth Leon Laboratoire d’immunologie et immunothérapie des cancers, Université de Bourgogne, EPHE/Inserm, U866, Dijon F-21000, France

Danijela Maksimovic-Ivanic Department of Immunology, Institute for Biological Research “Sinisa Stankovic,” Belgrade University, Belgrade, Serbia

Emanuela Masini Department of Preclinical and Clinical Pharmacology, Medical School, University of Florence, Florence, Italy

Rosanna Mastroianni Department of Preclinical and Clinical Pharmacology, Medical School, University of Florence, Florence, Italy

Manabu Matsumoto Laboratory of Diagnostic Pathology, Kochi Medical School Hospital, Nankoku, Kochi 783-8505, Japan

Salvador Mena Department of Physiology, University of Valencia, Valencia, Spain

Sanja Mijatovic Department of Immunology, Institute for Biological Research “Sinisa Stankovic,” Belgrade University, Belgrade, Serbia

Tadashi Moi Department of Multidisciplinary Cancer Treatment, Kyoto University School of Medicine, Kyoto 606-8507, Japan

Katsutoshi Nakayama Department of Respiratory Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan

Ferdinando Nicoletti Department of Biomedical Sciences, University of Catania, Via Androne, 83, Catania 95124, Italy

Yuji Ohtsuki Division of Pathology, Matsuyama-shimin Hospital, Matsuyama, Ehime, Japan
Angel Ortega Department of Physiology, University of Valencia, Valencia, Spain

Hyun-Ock Pae Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, 570-749, Republic of Korea

Rosa M. Pascale Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, 07100, Italy

Catherine Paul Laboratoire d’immunologie et immunothérapie des cancers, Université de Bourgogne, EPHE/Inserm, U866, Dijon, F-21000, France

Shehla Pervin Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA

Claire Quiney Tumor Biology Labs, Biochemistry Department, UCC, Cork, Ireland

Lisa A. Ridnour Radiation Biology Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Tracy Robson School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, BT9 7BL, UK

Yon Rojanasakul Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506, USA

Youcef M. Rustum Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

Takahiko Sasaki Department of Respiratory Medicine, Tohoku University School of Medicine, Sendai 980-8574, Japan

Néjia Sassi Laboratoire d’immunologie et immunothérapie des cancers, Université de Bourgogne, EPHE/Inserm, U866, Dijon F-21000, France

Suvajit Sen Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA

Peter Siesjö The Rausing Laboratory, Section of Neurosurgery, Department of Clinical Sciences, University of Lund, Lund, Sweden; Department of Neurosurgery, University of Lund, Lund, Sweden

Rajan Singh Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA

Gen-Ichiro Soma Department of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University, 1750–1 Mikicho, Kida-gun, Kagawa 761-0793, Japan; Macrophi Inc., Hayashi-cho, Takamatsu-shi, Kagawa 761–0301, Japan;
Institute for Health and Science, Tokushima Bunri University, Nishihama, Yamashirocho, Tokushima, 770–8514, Japan

Stanislava Stosic-Grujicic Department of Immunology, Institute for Biological Research “Sinisa Stankovic,” Belgrade University, Belgrade, Serbia

Christopher H. Switzer Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Gregory R.J. Thatcher Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA

Douglas D. Thomas Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA

Mario I. Vega Unidad de Investigacion Medica En Inmunologia e Infectologia, Hospital de Infectologia. CMN “LA Caza” IMSS, Mexico City, Mexico

Liying Wang Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA

J. Brice Weinberg Departments of Medicine and Immunology, Duke University and Veterans Affairs Medical Centers, 508 Fulton Street, Durham, NC, USA

David A. Wink Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Mutsuo Yamaya Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University School of Medicine, Sendai 980-8574, Japan

Kazuhiro Yanagihara Outpatient Oncology Unit, Kyoto University Hospital, Kyoto 606-8507, Japan

Hiroyasu Yasuda Department of Clinical Application, Translational Research Center, Tohoku University, Sendai 980-8574, Japan; Outpatient Oncology Unit, Kyoto University Hospital, Kyoto 606-8507, Japan