Visual Prosthetics
Gislin Dagnelie
Editor

Visual Prosthetics

Physiology, Bioengineering, Rehabilitation

Springer
Editor
Gislin Dagnelie
Lions Vision Research & Rehabilitation Center
Johns Hopkins University School of Medicine
550 N. Broadway, 6th floor
Baltimore, MD 21205-2020
USA
gdagnelie@jhmi.edu
Preface

Visual Prosthetics as a Multidisciplinary Challenge

This is a book about the quest to realize a dream: the dream of restoring sight to the blind. A dream that may have been with humanity much longer than the idea that disabilities can be treated through technology – which itself is probably a very old idea. Long ago, when blindness was still considered a curse from the gods, someone must have had the inspiration of building a wooden leg to replace one that had been crushed in a natural calamity or in battle. Many centuries lie between the concept of creating such a crude prosthesis to treat disability and today’s endeavors to replace increasingly complex bodily functions, but the wish to restore useful function and the researchers’ creative spirit remain the same.

Around 1980, the developers of the cochlear implant were performing the first modest clinical trials of a technology to make the deaf hear again, or even hear for the first time. From those humble first attempts sprang a field that has become a model for modern neuroprosthetics, with tens of thousands of cochlear implants used successfully around the world. The development of the cochlear prosthesis illustrates the importance of bringing together professionals from a wide range of disciplines, from basic biology and engineering to rehabilitation, to create a functional substitute for a human sensory organ.

In 1995, the editor of IEEE Spectrum magazine determined that artificial vision might be the next technological frontier, and that it should be the topic of a special issue. He invited a half dozen vision researchers to contribute articles about their expectations in two areas, visual prosthetics and machine vision, combined under the title “Towards an Artificial Eye.” He instructed the authors not to feel constrained by existing technology, but rather to envision the steps that would be required to replace natural vision. Most of the ideas presented in that May 1996 issue have not yet been realized, especially those for prosthetic vision. Machine vision has made larger strides, which just goes to show that biology is more stubborn than technology - but also more resourceful, as machine vision researchers realize on a daily basis: Segmenting and recognition tasks that our visual system performs effortlessly can pose formidable problems for a computer-based image analysis system. Yet, encouragingly, some visual prosthesis designs predicted in that 1996 magazine are now being tested in clinical trials.
This is an exciting time for the field of visual prosthetics. Obviously, it is exciting for the hope it brings that vision can be restored. It is exciting for its challenge to researchers, technicians, clinicians, rehabilitation workers, and people in many other fields to commit their talents to the solution of a problem with so many dimensions. It is exciting for the experimenters when, seemingly against all odds, a blind study participant with a few dozen electrodes on the retina recognizes an object or letter “E” and finds a path around traffic cones in the lab without a cane or guidance. It is exciting for the participants in these trials, who feel they can play an active role in realizing the dream. It is exciting for their loved ones and the public at large, for whom the developments can’t come quickly enough. And it is, unfortunately, too exciting for some media types who can’t stop themselves from running ahead of the facts.

This is also a field of setbacks, as when the new electrode coating that was supposed to withstand conditions inside the body for 20 years starts peeling off during its initial high-temperature soak test; of unpleasant surprises, as when the simple idea of putting together many small phosphenes to create an image runs up against the reality that phosphenes overlap and blur the image beyond recognition; and of patience put to the test, as when investors and the public do not get the miracle cure they may have been expecting.

But mostly this is a field of great dedication by hundreds of researchers in dozens of labs in countries on four continents; of amazing tenacity by study participants learning to make sense of a way of seeing that is so different from the vision they lost; and of true collegial spirit among all who share the dream, despite the realities of commercial interest. This collegial spirit was evident even in the days of the IEEE Spectrum issue: Throughout the 1990s, the National Institute of Neurological Disorders and Stroke sponsored an annual neural prosthesis workshop that was attended by all researchers competing for the scarce development funds then available for neuroprosthetics. Although the competition could be fierce, the annual workshop attendees formed a community that collectively solved stubborn problems of interfacing technology and biology, and attracted many new and talented researchers to the field. Looking back, I feel that these workshops had a limitation: They were, by the nature of the research contracts given out, strongly geared towards technology, and less towards integration with physiology or rehabilitation. This was inherent in NINDS’s mission to foster development of devices with broad application, but non-engineers were less likely to attend these highly technical gatherings.

In the year 2000, Dr. Philip Hesburg at the Detroit Institute of Ophthalmology had the inspiration to foster a new collaboration among visual prosthesis researchers, clinicians, and workers in low vision rehabilitation by creating and sponsoring a series of biennial meetings that he calls “The Eye and the Chip.” Successful beyond Dr. Hesburg’s expectations, these meetings have become the premier gathering place for researchers from all parts of the world and from very different backgrounds. Invited speakers are scientists who are advancing the field, yet the scale and atmosphere allow all researchers, patients, and the media to come and be updated about progress over the past 2 years. More perhaps than at other scientific
meetings, where investigators tend to gather within disciplines, participants at The Eye and the Chip are challenged to be open-minded, learn about and critique each other’s work, and return home with fresh ideas for interdisciplinary approaches. The interdisciplinary character of this book reflects that same spirit.

This book is also a reality check, an assessment of where we stand in 2010, almost 50 years after G.S. Brindley put the first revolutionary electrode assemblies under a blind patient’s skull, yet in a field that is still very young. And this book is an introduction for people outside the field who may want to join the quest, or just be better informed. The book is unusual in being aimed at a readership as diverse as the disciplines contributing to the field: basic scientists, tissue and biomedical engineers, clinical researchers, and rehabilitation specialists.

Most of all, this book is a tribute to the visionaries, the inventors, the creators of devices, the biomedical engineers, the surgeons and medical staff, the research psychophysicists, the occupational therapists, and the patient pioneers and their loved ones. In the chapters that follow, a few dozen workers in the field present their work and that of many colleagues. Each of their accounts conveys a passion for this multidisciplinary journey of discovery, a sense of urgency, a precise and meticulous effort to get it right and to learn – from the damaged visual system and from study participants – how to further improve the technology.

If the reader comes away from this book with a sense of the breadth of the enterprise, the hope for solutions that will truly help blind individuals, and the excitement shared by so many working in the field, then it has accomplished much of what the authors set out to do. If it allows practitioners in one discipline participating in this development to get a better appreciation for what their colleagues in other disciplines are trying to accomplish, then the authors have clearly hit the right notes. And if it inspires enthusiastic young minds to join the quest, and to help turn the visual prosthesis into the next cochlear implant, then we will truly have succeeded.

Baltimore, MD

Gislin Dagnelie

September 2010
Acknowledgments

This book reflects a group effort. Each contributor embraced the concept of a book that would span many disciplines, and reaching a consensus about what should be covered, and by which authors, proved surprisingly easy. I thank the authors for making time in their busy schedules to share their knowledge and create this overview.

I appreciate the encouragement of my colleagues at the Lions Vision Research and Rehabilitation Center of the Wilmer Eye Institute at Johns Hopkins, who encouraged me to take on the challenge of creating this book and who helped in large and small ways to bring it to completion. I am deeply grateful to Maryam Khan, M.D., who helped me turn a stack of diverse manuscripts into polished chapters that not only met the publisher’s technical standards but are a pleasure to read. But most of all, I am grateful to the study participants who give meaning to our research, and who are an ongoing source of inspiration. This book is dedicated to them.

Baltimore, MD

Gislin Dagnelie
Contents

Preface.. v

Part I Structure and Function of the Visual System

1 The Human Visual System: An Engineering Perspective 3
 Gislin Dagnelie

2 Vision’s First Steps: Anatomy, Physiology, and Perception in the Retina, Lateral Geniculate Nucleus, and Early Visual Cortical Areas.. 23
 Xoana G. Troncoso, Stephen L. Macknik, and Susana Martinez-Conde

3 Retinal Remodeling and Visual Prosthetics... 59
 Bryan W. Jones, Robert E. Marc, and Carl B. Watt

4 Cortical Plasticity and Reorganization in Severe Vision Loss 77
 Eduardo Fernández and Lotfi B. Merabet

5 Visual Perceptual Effects of Long-Standing Vision Loss 93
 Ava K. Bittner and Janet S. Sunness

Part II Neural Stimulation of the Visual System

6 Structures, Materials, and Processes at the Electrode-to-Tissue Interface .. 113
 Aditi Ray and James D. Weiland

7 Delivery of Information and Power to the Implant, Integration of the Electrode Array with the Retina, and Safety of Chronic Stimulation ... 137
 James Loudin, Alexander Butterwick, Philip Huie, and Daniel Palanker
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal Cell Excitation Modeling</td>
<td>159</td>
</tr>
<tr>
<td>Carlos J. Cela and Gianluca Lazzi</td>
<td></td>
</tr>
<tr>
<td>Neurotransmitter Stimulation for Retinal Prosthesis: The Artificial Synapse Chip</td>
<td>173</td>
</tr>
<tr>
<td>Raymond Iezzi and Paul G. Finlayson</td>
<td></td>
</tr>
<tr>
<td>Synthetic Chromophores and Neural Stimulation of the Visual System</td>
<td>193</td>
</tr>
<tr>
<td>Elias Greenbaum and Barbara R. Evans</td>
<td></td>
</tr>
<tr>
<td>Biophysics/Engineering of Cortical Electrodes</td>
<td>207</td>
</tr>
<tr>
<td>Philip R. Troyk</td>
<td></td>
</tr>
<tr>
<td>Part III Prosthetic Visual Function: Acute and Chronic</td>
<td></td>
</tr>
<tr>
<td>The Response of Retinal Neurons to Electrical Stimulation: A Summary of In Vitro and In Vivo Animal Studies</td>
<td>229</td>
</tr>
<tr>
<td>Shelley I. Fried and Ralph J. Jensen</td>
<td></td>
</tr>
<tr>
<td>Findings from Acute Retinal Stimulation in Blind Patients</td>
<td>259</td>
</tr>
<tr>
<td>Peter Walter and Gernot Roessler</td>
<td></td>
</tr>
<tr>
<td>The Perceptual Effects of Chronic Retinal Stimulation</td>
<td>271</td>
</tr>
<tr>
<td>Alan Horsager and Ione Fine</td>
<td></td>
</tr>
<tr>
<td>Findings from Chronic Optic Nerve and Cortical Stimulation</td>
<td>301</td>
</tr>
<tr>
<td>Edward M. Schmidt</td>
<td></td>
</tr>
<tr>
<td>Part IV Towards Prosthetic Vision: Simulation, Assessment, Rehabilitation</td>
<td></td>
</tr>
<tr>
<td>Simulations of Prosthetic Vision</td>
<td>319</td>
</tr>
<tr>
<td>Michael P. Barry and Gislin Dagnelie</td>
<td></td>
</tr>
<tr>
<td>Image Analysis, Information Theory and Prosthetic Vision</td>
<td>343</td>
</tr>
<tr>
<td>Luke E. Hallum and Nigel H. Lovell</td>
<td></td>
</tr>
<tr>
<td>Simulations of Cortical Prosthetic Vision</td>
<td>355</td>
</tr>
<tr>
<td>Nishant R. Srivastava</td>
<td></td>
</tr>
<tr>
<td>Phosphene Mapping Techniques for Visual Prostheses</td>
<td>367</td>
</tr>
<tr>
<td>H. Christiaan Stronks and Gislin Dagnelie</td>
<td></td>
</tr>
<tr>
<td>Prosthetic Vision Assessment</td>
<td>385</td>
</tr>
<tr>
<td>Marilyn E. Schneek and Gislin Dagnelie</td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Activities of Daily Living and Rehabilitation with Prosthetic Vision</td>
<td>413</td>
</tr>
<tr>
<td>Duane R. Geruschat and James Deremeik</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>425</td>
</tr>
<tr>
<td>Subject Index</td>
<td>447</td>
</tr>
</tbody>
</table>
Contributors

Michael P. Barry
Lions Vision Research & Rehabilitation Center,
Johns Hopkins University School of Medicine, Baltimore, MD 21205-2020, USA
mbarry11@jhu.edu

Ava K. Bittner
Lions Vision Research & Rehabilitation Center, Wilmer Eye Institute,
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
abittne1@jhmi.edu

Alex Butterwick
Department of Applied Physics, Stanford University, Stanford, CA, USA
abutterwick@gmail.com

Carlos J. Cela
Department of Electrical and Computer Engineering, University of Utah,
50 S. Central Campus Drive, Room 3280, Salt Lake City, UT 84112-9206, USA
carlos.cela@utah.edu

Gislin Dagnelie
Lions Vision Research & Rehabilitation Center,
Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2020 USA
gdagnelie@jhmi.edu

James Deremeik
Johns Hopkins University, Baltimore, MD, USA
jderemeik@jhmi.edu

Barbara R. Evans
Oak Ridge National Laboratory, Oak Ridge, TN, USA
evansb@ornl.gov

Eduardo Fernández
Instituto de Bioingeniería, Universidad Miguel Hernández,
Avda de la Universidad s/n, 03202 Elche (Alicante), Spain
e.fernandez@umh.es
Ione Fine
University of Washington, Seattle, WA, USA
ionefine@u.washington.edu

Paul G. Finlayson
Departments of Otolaryngology and Ophthalmology,
Wayne State University, 550 E. Canfield
pfinlays@med.wayne.edu

Shelley I. Fried
VA Boston Healthcare System, 150 South Huntington Avenue,
Boston, MA 02130, USA
and
Massachusetts General Hospital & Harvard Medical School,
429 Their, 50 Blossom Street, Boston, MA 02114, USA
fried.shelley@mgh.harvard.edu

Duane R. Geruschat
Lions Vision Research & Rehabilitation Center, Wilmer Eye Institute, Johns
Hopkins University School of Medicine, 550 N, Baltimore, MD 21205, USA
dgeruschat@jhmi.edu

Elias Greenbaum
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
greenbaum@ornl.gov

Luke E. Hallum
Graduate School of Biomedical Engineering, University of New South Wales,
ANZAC Parade, Sydney 2052, Australia
and
Center for Neural Science, New York University, New York, NY 10003, USA
hallum@cns.nyu.edu

Alan Horsager
Eos Neuroscience, Inc., 2100 3rd Street, 3rd floor, Los Angeles,
CA 90057, USA
and
Department of Ophthalmology, University of Southern California,
Los Angeles, CA 90089, USA
horsager@usc.edu

Philip Huie
Department of Ophthalmology, Stanford University, 450 Serra Mall,
Stanford, CA, 94305, USA
philhuie@stanford.edu

Raymond Iezzi
Department of Ophthalmology, Mayo Clinic, 200 First Street, SW,
Rochester, MN 55905, USA
iezzi.raymond@mayo.edu
Contributors

Ralph J. Jensen
VA Boston Healthcare System, Boston, MA, USA
Ralph.Jensen@va.gov

Bryan W. Jones
Moran Eye Center, University of Utah, 65 Mario Capecchi Drive,
Salt Lake City, UT 84132, USA
bryan.jones@mcc.utah.edu

Gianluca Lazzi
Department of Electrical and Computer Engineering,
University of Utah, Salt Lake City, UT, USA
lazzi@utah.edu

James Loudin
Department of Applied Physics, Stanford University, 450 Serra Mall,
Stanford, CA 94305, USA
loudin@stanford.edu

Nigel H. Lovell
University of New South Wales, Sydney, Australia
N.Lovell@unsw.edu.au

Stephen L. Macknik
Barrow Neurological Institute, Phoenix, AZ, USA
macknik@neuralcorrelate.com

Susana Martinez-Conde
Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
smart@neuralcorrelate.com

Robert E. Marc
Moran Eye Center, University of Utah, Salt Lake City, UT, USA
robert.marc@hsc.utah.edu

Lotfi B. Merabet
Harvard Medical School, Boston, MA, USA
Lotfi_Merabet@meei.harvard.edu

Daniel Palanker
Department of Applied Physics, Stanford University, Stanford, CA, USA
palanker@stanford.edu

Aditi Ray
Department of Biomedical Engineering, 1042 Downey Way,
Denney Research Building (DRB) 140, Los Angeles, CA 90089, USA
Aditi.Ray@AlconLabs.com

Gernot Roessler
Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
groessler@ukaachen.de
Edward M. Schmidt
National Institutes of Health (retired)
emschmidt@atlanticbb.net

Marilyn E. Schneck
Rehabilitation Engineering and Research Center, The Smith-Kettlewell Eye Research Institute, 2318 Fillmore Street, San Francisco, CA 94115, USA
and
Vision Sciences Program School of Optometry-2020, University of California at Berkeley, Berkeley, CA 94720-2020, USA
mes@ski.org

Nishant R. Srivastava
Department of Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3255 S. Dearborn, WH 314, Chicago, IL 60616, USA
srivnis@gmail.com

H. Christiaan Stronks
Lions Vision Research and Rehabilitation Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 550 N. Broadway, 6th floor, Baltimore, MD 21205, USA
hstronk1@jhmi.edu

Janet S. Sunness
Greater Baltimore Medical Center, Baltimore, MD, USA
jsunness@gbmc.org

Xoana G. Troncoso
California Institute of Technology, Pasadena, CA, USA
x.troncoso@neuralcorrelate.com

Philip R. Troyk
Department of Biomedical Engineering,
Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3255 S. Dearborn, WH 314, Chicago, IL 60616, USA
troyk@iit.edu

Peter Walter
Department of Ophthalmology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
pwalter@ukaachen.de

Carl B. Watt
Moran Eye Center, University of Utah, Salt Lake City, UT, USA
carl.watt@hsc.utah.edu

James D. Weiland
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
jweiland@doheny.org