TECHNOLOGY AND INTERACTION

The use of computers to support collaboration is \textit{the} distinctive feature of CSCL research and practice. Although the lack of facial and spatial cues, as well as delay of immediate feedback have been for a long time - and still are - a permanent reproach, it is exactly this lack that gives the use of CSCL its own merit. Naturally, classroom-based practice tends to be preferred out of familiarity but not because this is undeniably the best practice to achieve every type of learning objective.

All the same, classroom-based practices are frequently transferred into technical environments and sometimes this is even inescapable. Decisions at the institutional level determine the tools available to support collaboration. Commercial environments, containing basic tools to support collaboration, are frequently used. Nevertheless, it is precisely collaborative \textit{learning} that should guide practitioners and researcher in their decisions with respect to the technology that is best suited to achieve the desired CSCL environment.

In Chapter 8, De Graaf, De Laat, and Scheltinga discuss the applicability of commercial tools (CSCL-ware as their common denominator), through a lens combining the dimensions of task ownership, task character and task control (see Chapter 1) with three pedagogical orientations: guided learning, action learning and experiential learning. Although no direct relationship exists between the CSCL-ware used and the pedagogical orientation, some CSCL-ware is more suitable for promoting and scaffolding collaborative learning than other. From the institutional point of view, the use of one standard type of CSCL-ware (that supports the institution’s pedagogical orientation) is easiest and most practical to implement, but this should not restrict the use of specific tools when the pedagogical orientation of a course detracts from the institutional orientation.

Although the use of standardised tools appears seductive, collaboration requires more than a virtual writing desk or conference room. Environments for CSCL should not be strictly functional, but should also be pleasing as well. What about informal social interaction that we all partake in daily?

Kreijns and Kirschner argue in Chapter 9 that CSCL technology-design should not solely rely on supporting socio-cognitive interaction, but socio-emotional processes such as trust and cohesion should be taken into account as well. This is stressed by two pitfalls: social interaction is often taken for granted and it is usually restricted to cognitive, on-task processes. Here, the \textit{sociability} of a technological system can establish a sound social space that supports efficient and satisfying social interaction. Incorporating the social dimension into CSCL technology-design requires that traditional ‘interface design’ be substituted for ‘interaction design’. The latter approach enables study of social affordances because it not only focuses on the ‘usability’ of a system, but also on the ‘utility’ (or rather usefulness) in a specific setting. A clear challenge for the CSCL community is to systematically collect practices that elaborately discuss the alignment of the learning objectives, desired collaboration processes, the kind of support best suited to facilitate collaboration and the \textit{applicability of the CSCL-ware or technology used}.

\begin{flushright}
\textit{J. W. Strijbos, P. A. Kirschner R. L. Martens (eds.), What we know about CSCL, 199.} \\
\end{flushright}