EARTHQUAKE GEOTECHNICAL ENGINEERING
GEOTECHNICAL, GEOLOGICAL AND EARTHQUAKE ENGINEERING

Volume 6

Series Editor
Atilla Ansal, Kandilli Observatory and Earthquake Research Institute, Boğaziçi University, Istanbul, Turkey

Editorial Advisory Board
Julian Bommer, Imperial College London, U.K.
Jonathan D. Bray, University of California, Berkeley, U.S.A.
Kyriazis Pitilakis, Aristotle University of Thessaloniki, Greece
Susumu Yasuda, Tokyo Denki University, Japan

The titles published in this series are listed at the end of this volume
EARTHQUAKE GEOTECHNICAL ENGINEERING

4th International Conference on Earthquake Geotechnical Engineering-Invited Lectures

edited by

KYRIAZIS D. PITILAKIS

Department of Civil Engineering,
Aristotle University of Thessaloniki, Greece
PREFACE

Geotechnical Earthquake Engineering and Soil Dynamics, as well as their interface with Engineering Seismology, Geophysics and Seismology, have all made important progress over the past 15 years, mainly due to the development of instrumented large scale experimental facilities, to the increase in the quantity and quality of recorded earthquake data, to the numerous well-documented case studies from recent strong earthquakes as well as enhanced computer capabilities. One of the major factors contributing to the aforementioned progress is the increasing social need for a safe urban environment, large infrastructures and essential facilities. The advances achieved are also confirmed by the increasing number of scientific journals and publications which are relevant to the field of Geotechnical Earthquake Engineering.

The successful International Conferences on Geotechnical Earthquake Engineering organized every 4 years by the Technical Committee of Earthquake Engineering of the International Society of Soil Mechanics and Geotechnical Engineering constitute irrefutable evidence as to the growing interest taken by the scientific and engineering community in Geotechnical Earthquake Engineering.

This book contains the full papers of the invited keynote and theme lectures, including the 2nd Ishihara lecture, given during the 4th International Conference on Geotechnical Earthquake Engineering (4ICEGE) held in June 2006 in Thessaloniki, Greece. It provides a thorough presentation of state-of-the-art topics related to Earthquake Geotechnical Engineering and Soil Dynamics and their interface with Engineering Seismology, Geophysics and Seismology. Interdisciplinary topics such as vulnerability assessment and seismic risk management of geotechnical structures and lifelines are also addressed and discussed. A comprehensive overview of the possibilities offered by the recent worldwide developments in large scale testing facilities and strong ground motion arrays is also illustrated.

The nineteen chapters of this book, prepared by distinguished scientists and experts, provide a panorama of recent achievements in Geotechnical Earthquake Engineering. Certain unresolved engineering issues are also highlighted and some speculations and ideas for the future are mentioned.

The main scope of the book is to provide the engineering society, including geotechnical and structural engineers, geologists and seismologists as well as risk managing scientists, with the most recent advances and developments in the study of soil dynamics, earthquake geotechnical engineering, seismology and risk assessment and management.

Kyriazis Pitilakis
Professor of Aristotle University, Chairman of 4ICEGE

Editor
TABLE OF CONTENTS

Preface ... v

Chapter 1. SPT- and CPT-based relationships for the Residual Shear Strength of Liquefied Soils
I.M. Idriss and R.W. Boulanger

1. Introduction .. 1
2. Case history studies .. 3
3. SPT-based correlation for residual strength 7
 3.1. Correlation of S_r with $(N_1)_{60cs-Sr}$ 7
 3.2. Correlation of S_r/σ_v' with $(N_1)_{60cs-Sr}$ 8
4. CPT-based correlation for residual strength 12
 4.1. Converting the SPT Correlation 13
 4.2. CPT Values for Case Histories 15
5. Concluding remarks .. 17
References .. 21

Chapter 2. Long Period Strong Ground Motion and its Use as Input to Displacement Based Design
E. Faccioli, C. Cauzzi, R. Paolucci, M. Vanini, M. Villani, and D. Finazzi

1. Introduction .. 23
2. Empirical prediction of displacement spectral response (DRS) over a broad period range .. 24
 2.1. Data Selection .. 25
 2.2. Prediction Equations for Displacement Spectral Response 28
 2.3. Influence of Local Ground Conditions 31
 2.4. Vertical Spectra .. 34
 2.5. A Simplified Spectral Displacement Model 35
 2.6. Other Aspects .. 36
| Chapter 3. Site Effects: From Observation and Modelling to Accounting for them in Building Codes | |
|---|-----|---|
| F.J. Chávez-García | |
| 1. Introduction | 53 |
| 2. Estimation of site effects | 55 |
| 3. Modelling site effects. The importance of the model | 61 |
| 4. Accounting for site effects in building codes | 67 |
| 5. Concluding remarks | 69 |
| References | 70 |

| Chapter 4. Source and Site Factors in Microzonation | |
|---|-----|---|
| A. Ansal and G. Tönük | |
| 1. Introduction | 73 |
| 2. Input motion | 74 |
| 2.1. Real Acceleration Records | 74 |
| 2.2. Simulated Acceleration Record | 76 |
| 3. Site characterisation | 78 |
| 4. Microzonation | 80 |
| 4.1. Microzonation with Respect to Ground Motion | 80 |
| 4.2. Microzonation with Respect to Liquefaction Susceptibility | 81 |
| 5. Spectral accelerations for vulnerability assessments | 86 |
Table of contents

6. Conclusions .. 89

References .. 90

Chapter 5. A Review of Large-Scale Testing Facilities in Geotechnical Earthquake Engineering

1. Introduction .. 93

2. Instrumented test sites ... 95
 2.1. Euroseis Project ... 95
 2.1.1. Project objectives ... 96
 2.1.2. General description of the test site ... 96
 2.1.3. Instrumentation .. 99
 2.1.4. Main scientific and engineering outcomes ... 101
 2.2. UCSB Nees Garner Valley and Wildlife Test Sites (Dr. Jamieson Steidl, PI) 102
 2.2.1. Soil and seismic characteristics at Garner Valley .. 102
 2.2.2. Geologic conditions ... 102
 2.2.3. Garner Valley SFSI structure ... 103
 2.2.4. Wildlife refuge liquefaction field site .. 104

3. Mobile laboratories .. 106
 3.1. Nees Facilities at UCLA ... 106
 3.1.1. Eccentric mass shakers .. 106
 3.1.2. Linear shaker ... 107
 3.1.3. Cone penetration testing truck ... 107
 3.1.4. Satellite system .. 108
 3.2. NEES Facilities at the University of Texas ... 109
 3.2.1. Cruiser (instrumentation van) .. 109
 3.2.2. Thumper .. 110
 3.2.3. T-Rex (tri-axial vibrosies) .. 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4. Liquidator (low frequency vibrosies)</td>
<td>110</td>
</tr>
<tr>
<td>3.2.5. Representative collaborative research project</td>
<td>111</td>
</tr>
<tr>
<td>4. Large-scale testing facilities</td>
<td>113</td>
</tr>
<tr>
<td>4.1. NEES Facilities at Cornell</td>
<td>113</td>
</tr>
<tr>
<td>4.2. UCSD Shake Table</td>
<td>115</td>
</tr>
<tr>
<td>4.3. Japan E-Defense Shake Table</td>
<td>116</td>
</tr>
<tr>
<td>4.3.1. Recent shaking table tests at E-Defense</td>
<td>116</td>
</tr>
<tr>
<td>4.3.2. Representative test results</td>
<td>118</td>
</tr>
<tr>
<td>5. Earthquake loading aboard geotechnical centrifuges</td>
<td>118</td>
</tr>
<tr>
<td>5.1. Dynamic Centrifuge Modelling</td>
<td>119</td>
</tr>
<tr>
<td>5.2. Shaking Facilities at Cambridge University</td>
<td>119</td>
</tr>
<tr>
<td>5.3. Pneumatic Shaker at CEA-CESTA, France</td>
<td>120</td>
</tr>
<tr>
<td>5.4. Earthquake Simulation at LCPC, France</td>
<td>120</td>
</tr>
<tr>
<td>5.5. Recent Advances in Earthquake Actuation Worldwide</td>
<td>121</td>
</tr>
<tr>
<td>6. International collaboration</td>
<td>123</td>
</tr>
<tr>
<td>6.1. Large Testing Facilities Worldwide</td>
<td>123</td>
</tr>
<tr>
<td>6.2. European Experience on Collaboration</td>
<td>123</td>
</tr>
<tr>
<td>6.3. The USA NEES Initiative</td>
<td>125</td>
</tr>
<tr>
<td>6.4. International Collaboration Challenges and Opportunities</td>
<td>126</td>
</tr>
<tr>
<td>6.4.1. Simulation</td>
<td>126</td>
</tr>
<tr>
<td>6.4.2. Cyberenvironments</td>
<td>127</td>
</tr>
<tr>
<td>6.4.3. Data infrastructure</td>
<td>127</td>
</tr>
<tr>
<td>7. Summary and conclusions</td>
<td>127</td>
</tr>
<tr>
<td>References</td>
<td>127</td>
</tr>
</tbody>
</table>

Chapter 6. Modelling of Dynamic Soil Problems
D.M. Wood

1. Introduction | 131 |
2. Constitutive modelling framework | 132 |
3. Fabric, soil stiffness and laboratory geophysics | 133 |
| 4. NEMISREF mitigation of foundation response | 137 |
| 5. Macroelement analysis | 142 |
| 6. Conclusions | 147 |
| References | 148 |

Chapter 7. Field Seismic Testing in Geotechnical Earthquake Engineering
K.H. Stokoe, II

1. Introduction | 151 |
2. Deeper seismic profiling | 152 |
3. In-situ parametric studies | 154 |
4. Conclusions | 156 |
References | 157 |

Chapter 8. Liquefaction Strengths of Poorly-Graded and Well-Graded Granular Soils Investigated by Lab Tests
T. Kokusho

1. Introduction | 159 |
2. Effect of grain size curve on S-wave velocity and N-value | 163 |
 2.1. *S-Wave Velocity* | 164 |
 2.2. *SPT N-Value* | 167 |
3. Effect of grain size distribution on cyclic strength | 169 |
 3.1. *Soil Materials* | 169 |
 3.2. *Test Method* | 170 |
 3.3. *Effect of Particle Gradation for Clean Granular Soils* | 172 |
 3.4. *Effect of Fines Content* | 174 |
4. Effect of particle gradation on post-liquefaction behavior | 178 |
 4.1. *Effect of Particle Gradation in Post-Liquefaction Shear Behavior* | 178 |
 4.2. *Effect of Fines Content in Post-Liquefaction Shear Behavior* | 180 |
5. Conclusions | 182 |
References | 183 |
Table of contents

Chapter 9. Shallow and Deep Foundations Under Fault Rupture or Strong Seismic Shaking
G. Gazetas, I. Anastasopoulos, and M. Apostolou

1. Introduction .. 185
2. Fault-rupture propagation and its interaction with foundations 186
 2.1. *Statement of the Problem* 186
 2.2. *Numerical Analysis and Results: Shallow Foundations* 187
 2.3. *Numerical Analysis and Results: Deep Foundations* 194
 2.3.1. *Piles* .. 195
 2.3.2. *Rigid caisson* .. 199
3. Nonlinear response of shallow foundations to strong seismic excitation 201
 3.1. *Introduction* .. 201
 3.3. *Characteristic Results* 204
 3.3.1. Static nonlinear (“pushover”) analysis 204
 3.3.2. Seismic response .. 207

References ... 210

Chapter 10. Seismic Design and Performance of Surface Foundations
M. Pender

1. Introduction .. 217
2. Ultimate limit state design of shallow foundations in Eurocode 8 218
 2.1. *Acceleration Induced Reduction in Vertical Foundation Strength* 221
 2.2. *Undrained Response* .. 222
 2.3. *Drained Response* .. 223
3. Serviceability limit state design of shallow foundations
 for earthquake loading .. 224
4. Spring models for shallow foundations on soil 228
 4.1. *Shallow Foundations on a Continuous Elastic Soil* 229
 4.2. *Nonlinear Soil Stress–Strain Behaviour* 232
5. Integrated design of structure–foundation systems 235
 5.1. Structure Description ... 235
 5.2. Ruaumoko Modelling of the Structure–Foundation System 236
 5.3. Elastic Structural Response with Fixed Column–Footing Connections 237
 5.4. Elastic Structural Response with Pinned Column–Footing Connections 238
6. Conclusions .. 241
References ... 241

Chapter 11. Liquefaction Performance of Shallow Foundations in Presence of a Soil Crust
G. Bouckovalas and P. Dakoulas
1. Introduction .. 245
2. Existing background .. 246
 2.1. Performance-Based Design Requirements 246
 2.2. Static Bearing Capacity Degradation ... 248
 2.3. Liquefaction-Induced Foundation Settlements 250
3. Numerical analysis of liquefaction performance 253
4. Evaluation of degraded bearing capacity ... 256
5. Evaluation of liquefaction settlements .. 260
6. Performance-based design issues .. 266
7. Concluding remarks .. 271
References ... 273

Chapter 12. Seismic Design of Pile Foundations for Liquefaction Effects
R.W. Boulanger, D. Chang, S.J. Brandenberg, R.J. Armstrong,
and B.L. Kutter
1. Introduction .. 277
2. Pile groups in laterally spreading ground .. 278
 2.1. General Approach ... 278
 2.2. Analysis of Piles for the Nonliquefaction Case 278
Table of contents

2.2.1. Assemble a BNWF model ... 278
2.2.2. Estimate loads from the superstructure 279
2.2.3. Perform BNWF analysis ... 279

2.3. Evaluating the Potential for Liquefaction-Induced Ground Displacements ... 280

2.4. Analysis of Piles for the Liquefaction Case 281
 2.4.1. Modify the BNWF model for the effects of liquefaction 281
 2.4.2. Estimate loads from the superstructure 286
 2.4.3. Perform the BNWF analysis 288

2.5. Additional Comments for Pile Groups in Lateral Spreads 291

3. Pinning effects for approach embankments 292
 3.1. Definition and Background .. 292
 3.2. Procedures for Estimating Pile Pinning Effects 294
 3.2.1. Estimating embankment displacements for a range of restraining forces ... 294
 3.2.2. Estimating pile/bridge restraining forces for a range of displacements ... 296
 3.2.3. Compatibility of embankment and pile displacements 297
 3.3. Evaluation Against Centrifuge Model Tests 297

4. Other issues and considerations .. 299

5. Summary remarks .. 300

References ... 301

Chapter 13. Seismic Analysis and Design of Geotechnical Structures

S. Iai and T. Tobita

1. Introduction ... 303

2. Assemblage of soil particles .. 304

3. Some findings on seismic analysis 310
 3.1. Cyclic Deformation of Soil Under Initial Deviator Stress 310
 3.2. Effect of Residual Strength of Soil on Seismic Settlements of Embankments ... 311
3.3. Effect of Increase in Earth Pressures on Buried Structures ... 315
3.4. Effect of Initial Stress in the Backfill Soil on Retaining Walls .. 316
4. Performance-based design .. 316
5. Emerging trends in design ... 320
 5.1. From Design-For-Construction to Design-for-Performance .. 320
 5.2. From Standardized-Design to Site-Specific-Design ... 320
 5.3. From Analysis-of-Structural/Foundation Parts to Analysis-of-Soil–Structure System 320
 5.4. Further Emerging Trends: Producing Service ... 320
6. Designing large urban areas against combined hazards ... 321
7. Conclusions ... 323
References .. 324

Chapter 14. Simplified Seismic Slope Displacement Procedures
 J.D. Bray
1. Introduction ... 327
2. Seismic displacement analysis ... 328
 2.1. Critical Design Issues ... 328
 2.2. Deviatoric-Induced Seismic Displacements ... 328
3. Components of a seismic displacement analysis ... 329
 3.1. General ... 329
 3.2. Earthquake Ground Motion .. 329
 3.3. Dynamic Resistance ... 330
 3.4. Dynamic Response .. 332
4. Critique of some simplified seismic displacement methods ... 334
 4.1. General ... 334
 4.2. Seed (1979) Pseudostatic Slope Stability Procedure ... 334
 4.3. Makdisi and Seed (1978) Simplified Seismic Displacement Method 335
 5.1. Earthquake Ground Motions 340
 5.2. Dynamic Resistance of the Earth/Waste Structure 341
 5.3. Dynamic Response of the Potential Sliding Mass 341
 5.4. Functional Forms of Model Equations 342
 5.5. Equations for Estimating Seismic Deviatoric Displacements 343
 5.6. Model Validation and Comparison 346
 5.7. Illustrative Seismic Evaluation Example 348
6. Conclusions .. 350

References .. 351

Chapter 15. Developments of Soil Improvement Technologies for Mitigation of Liquefaction Risk

I. Towhata

1. Introduction .. 355
2. Sand densification ... 356
 2.1. General Remarks .. 356
 2.2. Blasting ... 356
 2.3. Experimental Reproduction of Blasting Stress 363
3. Soil improvement by grouting .. 365
 3.1. General Remarks .. 365
 3.2. Undrained Triaxial Tests on Sand Improved by Colloidal Silica 370
4. Dissipation of excess pore water pressure 376
5. Conclusion .. 382

References .. 382

Chapter 16. Remediation Methods Against Liquefaction Which Can be Applied to Existing Structures

S. Yasuda

1. Introduction .. 385
2. Remediation methods against liquefaction compiled in 1993
 (partially quoted from Yasuda, 2005a) 386
3. Restrictions to be considered in remediation techniques for existing
 structures ... 386
4. Remediation methods for existing raft foundations 390
 4.1. Principle of Remediation ... 390
 4.2. Example of Treated Structures .. 390
 4.2.1. A tank yard in Kawasaki (partially quoted from Ohmori, 1979;
 JGS, 1998) .. 390
 4.2.2. Fisherman’s Wharf (partially quoted from TC4, 2001) 391
 4.2.3. The Yokohama Customs Building (partially quoted from Kaneko
 et al., 2003) .. 391
 4.2.4. An oil tank in Kawasaki (partially quoted from Nikkei
 Construction, 2005) ... 392
 4.2.5. An oil tank (partially quoted from Sawauchi et al., 1992) 392
 4.2.6. A timber house ... 392
 4.3. Other Related Studies .. 392
5. Remediation methods for existing pile foundations 393
 5.1. Principle of Remediation .. 393
 5.2. Example of Treated Structures ... 393
 5.2.1. A bridge (partially quoted from JGS, 1998) 393
 5.2.2. A bridge (partially quoted from JGS, 2004) 394
 5.2.3. Elevated bridges in Kobe (partially quoted from Hanshin Express
 Way, 1997; TC4, 2001) ... 394
6. Remediation methods for existing embankments 394
 6.1. Principle of Remediation .. 394
 6.2. Example of Treated Structures ... 394
 6.2.1. The Tokaido Shinkansen (partially quoted from Nasu, 1984; JGS,
 1998) .. 394
 6.2.2. Yodogawa River dike (partially quoted from TC4, 2001) 395
 6.2.3. Arakawa River dike (partially quoted from JGS, 1998) 395
 6.2.4. Hachirogata Polder dike (partially quoted from Civil Eng. Dept. Akita
 Prefecture, 1990) ... 396
 6.2.5. Tokachi River dike (partially quoted from Hokkaido
 Development, 1994) ... 396
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Remediation methods for existing sea walls</td>
<td>396</td>
</tr>
<tr>
<td>7.1. Principle of Remediation</td>
<td>396</td>
</tr>
<tr>
<td>7.2. Example of Treated Structures</td>
<td>396</td>
</tr>
<tr>
<td>7.2.1. Kushiro Port (partially quoted from TC4, 2001)</td>
<td>396</td>
</tr>
<tr>
<td>7.2.2. Port of Oakland (partially quoted from TC4, 2001)</td>
<td>397</td>
</tr>
<tr>
<td>7.2.3. Ishikari Port (partially quoted from Kawamura et al., 2001)</td>
<td>397</td>
</tr>
<tr>
<td>7.2.4. Kobe Port (partially quoted from TC4, 2001)</td>
<td>397</td>
</tr>
<tr>
<td>7.2.5. A quay wall in Tokyo (partially quoted from JGS, 1998)</td>
<td>398</td>
</tr>
<tr>
<td>8. Remediation methods for existing buried structures</td>
<td>398</td>
</tr>
<tr>
<td>8.1. Principle of Remediation</td>
<td>398</td>
</tr>
<tr>
<td>8.2. Example of Treated Structures</td>
<td>399</td>
</tr>
<tr>
<td>8.2.1. A multi-service tunnel (partially quoted from JGS, 1998)</td>
<td>399</td>
</tr>
<tr>
<td>8.2.2. A subway station in Tokyo (partially quoted from Yokota et al.,</td>
<td>400</td>
</tr>
<tr>
<td>2001)</td>
<td></td>
</tr>
<tr>
<td>9. Remediation methods for existing structures affected by ground flow</td>
<td>400</td>
</tr>
<tr>
<td>9.1. Principle of Remediation</td>
<td>400</td>
</tr>
<tr>
<td>9.2. Example of Treated Structures</td>
<td>400</td>
</tr>
<tr>
<td>9.2.1. Metropolitan Expressway in Tokyo (partially quoted from Yasuda</td>
<td>400</td>
</tr>
<tr>
<td>and Ogasawara, 2004; Yasuda, 2005a)</td>
<td></td>
</tr>
<tr>
<td>9.2.2. Hanshin Expressway (partially quoted from JGS, 2004; Yasuda,</td>
<td>404</td>
</tr>
<tr>
<td>2005b)</td>
<td></td>
</tr>
<tr>
<td>10. Concluding remarks</td>
<td>404</td>
</tr>
<tr>
<td>References</td>
<td>405</td>
</tr>
</tbody>
</table>

Chapter 17. Lifeline Performance Under Extreme Loading During Earthquakes

T.D. O’Rourke and A.L. Bonneau

1. Introduction | 407 |
2. Geotechnical earthquake loading | 409 |
3. Lifeline system response to earthquakes | 411 |
4. Large-scale tests of ground rupture effects on steel pipelines with elbows | 416 |
5. Lateral soil–structure interaction during ground failure | 418 |
Table of contents

6. Large-scale tests of ground rupture effects on HDPE pipelines 425
7. Concluding remarks ... 429
References ... 431

Chapter 18. Seismic Risk Assessment of Underground Structures Under Transient Ground Deformations
R. Paolucci and K. Pitilakis
1. Introduction .. 433
2. Earthquake-induced transient ground strains 435
 2.1. Experimentally Based PGS–PGV Relations
 from Dense Seismic Networks 435
 2.2. Evaluation of PGS in the Presence of Strong Lateral Heterogeneities ... 440
3. Hazard maps and seismic risk assessment of underground pipeline systems ... 445
4. Application examples .. 447
5. Conclusions ... 456
References ... 457

Chapter 19. Issues in Seismic Risk Assessment of Transportation Networks
A.S. Kiremidjian, E. Stergiou, and R. Lee
1. Introduction .. 461
2. Overview of transportation risk assessment 463
 2.1. Component Risk Analysis ... 463
 2.2. Transportation Network Risk Assessment 465
 2.3. Estimation of Total Risk .. 467
 2.3.1. General formulation of point estimates of loss 467
 2.3.2. Point estimates of the structural loss for multiple sites and single
 event .. 468
 2.4. Ground Motion Correlation .. 469
 2.5. Damage Correlation .. 469
 2.5.1. Probability distributions of the structural loss for multiple sites
 and single event .. 470
 2.6. Evaluation of the Network Functionality Loss 471
Table of contents

2.6.1. Expected value of network functionality loss 471
2.6.2. Uncertainties in network functionality loss 471
2.7. Transportation Network Risk Curve from Monte Carlo Simulation with Importance Sampling 472
3. Application to the San Francisco Bay Area Transportation Network 472
 3.1. Hazard Assessment .. 474
 3.2. Damage Assessment .. 474
 3.3. Structural Loss ... 474
 3.4. Operational Loss ... 475
 3.5. Annual Seismic Risk Assessment 476
 3.6. Influence of Ground Motion and Damage Correlation on Loss Computations ... 478
4. Conclusions ... 479
References .. 479
Index ... 481