FRACTURE OF NANO AND ENGINEERING MATERIALS AND STRUCTURES
A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-4971-4 (HB)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Cover picture
Fracture and Delamination of Oxide: Fracture and delamination of 1μm (1x10^{-6} m) SiO₂ on Si with 1μm conical probe tip. Courtesy of Hysitron Inc., Minneapolis, Minnesota, USA

Printed on acid-free paper

All Rights Reserved
© 2006 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.
B. TRACKS

B1. Nanomaterials and Nanostructures

1T1. Fracture and Fatigue of Nanostuctured Materials
Channeling Effect in Fracture of Materials with Nanostructured Surface Layers
V. E. Panin and A. V. Panin

Atomistics and Configurational Forces in Gradient Elasticity
P. Steinmann and E. C. Aifantis

Tensile Behavior and Fracture of Carbon Nanotubes Containing Stone-Wales Defects
K. I. Tserpes and P. Papanikos

Atomic-Scale Investigation on Fracture Toughness in Nano-Composite Silicon Carbide
M. Ippolito, A. Mattoni, L. Colombo and F. Cleri

Multiscale Modeling and Computer Simulation of Stress-Deformation Relationships in Nanoparticle-Reinforced Composite Materials
L. V. Bochkaryova, M. V. Kireitseu, G. R. Tomlinson, V. Kompis and H. Altenbach

The Mechanical Parameters of Nanoobjects (Theory and Experiment)
E. Ivanova, N. Morozov and B. Semenov

Advanced Manufacturing Design Concepts and Modelling Tools of the Next Generation Nanoparticle-Reinforced Damping Materials
M. V. Kireitseu, G. R. Tomlinson, R. A. Williams and V. Kompis

Fracture of Nanostructured Ionomer Membranes
Yue Zou, X. Huang and K. L. Reifsnider

1T2. Failure Mechanisms
Deformation and Limit States of Carbon Nanotubes under Complex Loading
A. V. Chentsov and R. V. Goldstein

Interaction of Domain Walls with Defects in Ferroelectric Materials

Microstructure and Internal Stresses in Cyclically Deformed Al and Cu Single Crystals
M. E. Kassner

Determination of Equilibrium Configurations of Atomic Lattices at Quasistatic Deformation
S. N. Korobeynikov

Multiscale Mechanics of Carbon Nanotubes and their Composites
X.-Q. Feng

1T4. Fatigue and Fracture of MEMS and NEMS
In-Situ Scanning Electron Microscope Indentation of Gallium Arsenide
C. Pouvreau, K. Wasmer, J. Giovanola, J. Michler, J. M. Breguet and A. Karimi

Fracture of Nanostructured Lithium Batteries
K. E. Aifantis, J. P. Dempsey and S. A. Hackney

Analytical and Experimental Characterization of a Micromirror System
E. J. Pryputniewicz, C. Furlong and R. J. Pryputniewicz
Contents

A Metal Interposer for Isolating MEMS Devices from Package Stresses 67
R. J. Pryputniewicz, T. F. Marinis, J. W. Soucy, P. Hefti and A. R. Klempner

Computational Modeling of Nanoparticles in Biomicrofluidic Devices 69

Characterization of a MEMS Pressure Sensor by a Hybrid Methodology 71
R. J. Pryputniewicz and C. Furlong

New Approach to Synthesis of Laser Microwelding Processes for Packaging 73
R. J. Pryputniewicz, W. Han and K. A. Nowakowski

Thermal Management of RF MEMS Relay Switch ... 75
R. J. Pryputniewicz

1T7. Thin Films .. 77

Buckling and Delamination of Thin Layers on a Polymer Substrate 77
A. A. Abdallah, D. Kozodaev, P. C. P. Bouten, J. M. J. den Toonder and G. De With

Carbide Coated Cutting Tool Properties Investigation by Nano-Mechanical
Measurements under 250-500°C .. 79
B. Vasques, D. Joly, R. Leroy, N. Ranganathan and P. Donnadieu

Diamond Coating Debonding in Tool Application ... 81
D. Moulin, P. Chevrier, P. Lipinski and T. Barré

Interfacial Strength of Ceramic Thin Film on Polymer Substrate 83
M. Omiya and K. Kishimoto

Delaminate Behavior of PVD/CPVD Thin Film ... 85
S. Doi and M. Yasuoka

Experimental Study of Microhardness and Fracture of Implanted Gallium
Nitride Films .. 87
P. Kavouras, M. Katsikini, E. Wendler, W. Wesch, H. M. Polatoglou, E. C. Paloura, Ph. Komninou and Th. Karakostas

1T9. Failure of Nanocomposites ... 89

Crack Tip Strain Field and its Propagation Characteristics in a Polymer Foam 89
F.-P. Chiang, S. Chang and Y. Ding

How to Toughen Ceramics – Nanocomposites ... 91
H. Awaji and S.-M. Choi

Deformation and Fracture Behaviour of Nanocomposites ... 93
S. Dunger, J. K. W. Sandler, K. Hedicke and V. Altsadt

Fracture Mechanisms in Carbon Nanotube-Reinforced Composites 95
E. T. Thostenson and T.-W. Chou
B. TRACKS

B2. Engineering Materials and Structures

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2T1.</td>
<td>Physical Aspects of Fracture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fractal Approach to Crack Problems with Non-Root Singularity</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>New Method for Analysing the Magnetic Emission Signals During Fracture</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Radiation Method for Identification of Multi-Scale Fracture</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Micromechanical Modeling of Grain Boundary Resistance to Cleavage Fracture Propagation</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Microstructure of Reactor Pressure Vessel Steel Close to the Fracture Surface</td>
<td>107</td>
</tr>
<tr>
<td>2T2.</td>
<td>Brittle Fracture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brittle Fracture in Heat-Affected Zones of Girth Welds of Modern Line Pipe Steel (X100)</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Cleavage Fracture of Steels at Very Low Temperatures</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>New formulation of the Ritchie, Knot and Rice Hypothesis</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>The Effect of the Rate of Displacement on Crack Path Stability</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Scratching and Brittle Fracture of Semiconductor In-Situ Scanning Electron Microscope</td>
<td>117</td>
</tr>
<tr>
<td>2T3.</td>
<td>Ductile Fracture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failure Behavior of Hybrid-Laser Welds</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Fracture of Plastic Bodies. Deformations Concentrators</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>3D Ductile Tearing Analyses of Bi-Axially Loaded Pipes with Surface Cracks</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>New Model Materials for Ductile Fracture Studies</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Fatigue Threshold Computation Model Based on the Shakedown Analysis</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Void Coalescence in Metals Involving Two Populations of Cavities</td>
<td>133</td>
</tr>
</tbody>
</table>
Effects of Characteristic Material Lengths on Ductile Crack Propagation............ 135
E. Radi

Ductile Fracture by Void Nucleation at Carbides .. 137
J. Giovanola, D. Cannizzaro, R. Doglione and A. Rossol

The Significance of Maximum Load on a Load-Displacement Curve with Stable
Crack Extension ... 139
J. R. Donoso and J. D. Landes

3D Visualization of Ductile Fracture using Synchrotron X-Ray Computer
Tomography ... 141
L. Qian, H. Toda, T. Ohgaki, K. Uesugi, M. Kobayashi and T. Kobayashi

Non-Local Plastic-Damage Model for Failure Analysis of Sheet-Metals 143
M. Brunet, F. Morestin and H. Walter-Leberre

A Novel Technique for Extracting Stretch Zone Features From Fractographs 145
M. Tarafder, Swati Dey, S. Sivaprasad and S. Tarafder

Simulation of Fatigue Crack Growth by Crack Tip Blunting 147
P. Hutar and M. Sauzay

Loading Rate Effect on Ductile Fracture ... 149
R. Chaouadi

Experimental Investigation of Slant Crack Propagation in X100 Pipeline Steel....... 151

2T4. Nonlinear Fracture Mechanics... 153
Esis TC8 – Numerical Round Robin on Micro Mechanical Models : Results of
Phase III for the Simulation of the Brittle to Ductile Transition Curve................. 153
C. Poussard and C. Sainte Catherine

Closure of a Rectangular Skin Defect via the Advancement Flap 155
C. Antypas, C. Borboudaki, V. Kefalas and D. A. Eftaxiopoulos

Similarity Solutions of Creep – Damage Coupled Problems in Fracture Mechanics.. 157
L. V. Stepanova and M. E. Fedina

Impact Fracture Toughness Determination of Ductile Polymers by SPB Method 159
J. Wainstein, L. A. Fasce and P. M. Frontini

A Micro-Toughness Model for Ductile Fracture ... 161
K. Srinivasan, T. Siegmund and O. Kolednik

2T5. Fatigue and Fracture... 163
Crack Coalescence Modelling of FSW Joints... 163
A. Ali, M. W. Brown and C. A. Rodopoulos

Fatigue Crack initiation in a Two Phase B-Metastable Titanium Alloy: Influence
of Microstructural Parameters .. 165
A. Lenain, P. J. Jacques and T. Pardoen

Effects of Specimen Type, Size and Measurement Techniques on FCGR 167
B. Kumar and J. E. Locke

The Effect of Stress Ratio on Fatigue Short Cracking ... 169
C. A. Rodopoulos and S.-H. Han

Dwell-fatigue Behaviour of a Beta-Forged Ti 6242 Alloy 171
P. Lefranc, C. Sarracin-Baudoux and V. Doquet

Investigation into Fatigue Life of Welded Chemical Pipelines 173
Cz. Goss and L. Sniezek
Different Analytical Presentations of Short Crack Growth under Rotation-Bending Fatigue .. 175

D. Angelova and A. Davidkov
Variable Amplitude Load Interaction in Fatigue Crack Growth for 2024-T3 Aluminium Alloy .. 177

D. Kocanda, S. Kocanda and J. Torzewski
An Investigation on the Fatigue Performance of Hydraulic Gate Wheels 179

D. Polyzois and A. N. Lashari
A Micromechanical Model for Crack Initiation in High Cycle Fatigue of Metallic Materials ... 181

V. Monchiet, E. Charkaluk and D. Kondo
Comparative Analysis of Two Models for Evaluating Fatigue Data 183

Assessment of Damage at Notch Root of Thick Plates 185

E. C. G. Menin and J. L. de A. Ferreira
Fatigue Strength Prediction of Spot-Welded Joints Using Small Specimen Testing... 187

E. Nakayama, M. Fukumoto, M. Miyahara, K. Okamura, H. Fujimoto and K. Fukui
A Thermo-Mechanical Model for Random Braking of Machine Components 189

F. Loibnegger, H. P. Rossmanith and R. Huber
Lifetime Calculation of Railway Wheel Steels Based on Physical Data 191

F. Walther and D. Eifler
Fatigue Crack Propagation of Super-Duplex Stainless Steel at Different Temperatures ... 193

G. Chai and S. Johansson
Transitions of Fatigue Crack Initiation From Surface, Subsurface to SNDFCO 195

G. Chai
Surface Fatigue of Gear Teeth Flanks .. 197

G. Fajdiga, M. Sraml and J. Flasker
Fatigue and Fracture Processes in High Performance PM Tool Steels 199

G. Jesner, S. Marsoner, I. Schemmel and R. Pippan
Notch and Defect Sensitivity of ADI in Torsional Fatigue 201

B. Atzori and G. Meneghetti
Multi Axial Fatigue in Welded Components ... 203

G. Mesmacque, B. Wu, C. Robin, D. Zakrzewski and X. De coopman
Enhanced Fatigue Life by Mechanical Surface Treatments – Experiment and Simulation ... 205

H. P. Gaenser, I. Goedor, H. Leitner and W. Eichleeder
Analysis of Repaired Aluminum Panels in General Mixed-Mode Conditions 207

H. Hosseini-Toudeshky, M. Saber and B. Mohammadi
Effect of Strain Rate on Fatigue Behavior of Ultrafine Grained Copper 209

P. Gabor, H. J. Maier and I. Karaman
Lubricant Effects on Propagation of Surface-Breaking Cracks under Rolling Contact Loading .. 211

J. Lai and S. Ioannides
Computational Modelling of Crack Initiation in a Mixing Tee Subjected to Thermal Fatigue Load ... 213

I. Varfolomeyev

Estimation of Critical Stress Intensity Factor in Steel Cracked Wires.................. 215

J. Toribio, F. J. Ayaso, B. Gonzalez, J. C. Matos and D. Vergara

Low-Cycle Fatigue of Din 1.2367 Steels in Various Treatments............................ 217

C. C. Liu, J. H. Wu and C. C. Kuo

Impact Testing a Capable Method to Investigate the Fatigue Resistance 219

K. David, P. Agrianidis, K. G. Anthymidis and D. N. Tsipas

Comparative Assessment of Fatigue-Thresholds Estimated by Short and Long Cracks ... 221

K. K. Ray, N. Narasaiab and S. Tarafderb

Scanning Electron Microscope Measurements of Crack-Opening Stress on Fatigue Cracks Exposed to Overloads ... 223

L. Jacobsson and C. Persson

Propagation Path and Fatigue Life Predictions of Branched Cracks under Plane Strain Conditions ... 225

Short Crack Equations to Predict Stress Gradient Effects in Fatigue 227

M. A. Meggiolaro, A. C. O. Miranda, J. T. P. Castro and J. L. F. Freire

Fatigue Behaviour of Pre-Strained Type 316 Stainless Steel 229

M. Akita, M. Nakajima, K. Tokaji and Y. Uematsu

The Influence of Constraint on Fitting Fatigue Crack Growth Data 231

M. Carboni and M. Madia

Atomic Force Microscopy of Local Plastic Deformation for Tempered Martensite ... 233

M. Hayakawa, S. Matsuoka and Y. Furuya

Improvement of Fatigue Strength due to Grain Refinement in Magnesium Alloys 235

M. Kamakura, K. Tokaji, H. Shibata and N. Bekku

A Unified Fatigue and Fracture Model Applied to Steel Wire Ropes 237

M. P. Weiss, R. Ashkenazi and D. Elata

Correlation Between Paris’ Law Parameters Based on Self-Similarity and Criticality Condition ... 239

A. Carpinteri and M. Paggi

Thermo-Mechanical Fatigue Lifetime Assessment with Damage-Parameters, Energy-Criterions and Cyclic-J-Integral Concepts .. 241

M. Riedler, R. Minichmayr, G. Winter and W. Eichlseder

Predicting Fatigue Crack Retardation Following Overload Cycles 243

M. V. Pereira, F. A. Darwish, A. F. Camarao and S. H. Motta

Fatigue Crack Growth at Notches Considering Plasticity Induced Closure 245

J. Bruening, O. Hertel, M. Vormwald and G. Savaidis

Influence of Microstructure on Fatigue Properties of Ni-Base Superalloy at Elevated Temperature ... 247

Qy. Wang, Y. Matsuyama, N. Kawagoishi, M. Goto and K. Morino

Modelling Fatigue Crack Closure using Dislocation Dipoles 249

P. F. P. de Matos and D. Nowell

Comparison Between Fatigue Crack Growth Modelled by Continuous Dislocation Distributions and Discrete Dislocations 251
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Hansson, S. Melin and C. Persson</td>
<td>253</td>
</tr>
<tr>
<td>Fatigue Evaluation Considering the Environmental Influence Using a Monitoring System</td>
<td></td>
</tr>
<tr>
<td>R. Cicero, I. Gorrochategui and J. A. Alvarez</td>
<td>255</td>
</tr>
<tr>
<td>Thermal Fatigue Crack Initiation and Propagation Behavior of Steels for Boiler</td>
<td></td>
</tr>
<tr>
<td>S. Aoi, T. Marumiya, R. Ebara, T. Nishimura and Y. Tokunaga</td>
<td>257</td>
</tr>
<tr>
<td>Recent Developments in Fatigue Crack Growth</td>
<td></td>
</tr>
<tr>
<td>R. Jones, S. Pitt, and E. Siores</td>
<td>259</td>
</tr>
<tr>
<td>Crack Closure Effects in a Cracked Cylinder under Pressure</td>
<td></td>
</tr>
<tr>
<td>J. Zhao, R. Liu, T. Zhang and X. J. Wu</td>
<td>261</td>
</tr>
<tr>
<td>An Experimental Study of Tearing-Fatigue Interaction</td>
<td></td>
</tr>
<tr>
<td>P. Birkett, M. Lynch and P. Budden</td>
<td>263</td>
</tr>
<tr>
<td>Sif Solutions for Cracks in Railway Axles under Rotating Bending</td>
<td></td>
</tr>
<tr>
<td>S. Beretta, M. Madia, M. Schode and U. Zerbst</td>
<td>265</td>
</tr>
<tr>
<td>Mechanical Characterization of Single Crystal Bars with Capacitor Discharge Welding and Laser Cladding</td>
<td></td>
</tr>
<tr>
<td>S. Chiozzi, V. Dattoma and F. O. W. Panella</td>
<td></td>
</tr>
<tr>
<td>Fractal Dimension Analysis of Fracture Toughness Used High Strength Cast Iron.</td>
<td>267</td>
</tr>
<tr>
<td>S. Doi and M. Yasuoka</td>
<td></td>
</tr>
<tr>
<td>Investigating Gap Effects in Fatigue Life of Spot Welded Joints</td>
<td>269</td>
</tr>
<tr>
<td>M. Zehsaz and S. Hasanifard</td>
<td></td>
</tr>
<tr>
<td>Fatigue of Pmma Bone Cement</td>
<td>271</td>
</tr>
<tr>
<td>S. L. Evans</td>
<td></td>
</tr>
<tr>
<td>Influence on Thermal Barrier Coating Delamination Behaviour of Edge Geometry.</td>
<td>273</td>
</tr>
<tr>
<td>H. Brodin, X. H. Li and S. Sjoestroem</td>
<td></td>
</tr>
<tr>
<td>Low Cycle Fatigue and Fracture of a Coated Superalloy CMSX-4</td>
<td>275</td>
</tr>
<tr>
<td>S. Stekovic</td>
<td></td>
</tr>
<tr>
<td>Thermomechanical Fatigue of Open-Cell Aluminium Sponge</td>
<td>277</td>
</tr>
<tr>
<td>The Influence of Alternate Block Loading on the Fatigue Lifetime</td>
<td>279</td>
</tr>
<tr>
<td>M. Kohut and T. Lagoda</td>
<td></td>
</tr>
<tr>
<td>Fatigue Design and Inspection Planning of Welded Joints Based on Refined Physical Modelling</td>
<td>281</td>
</tr>
<tr>
<td>T. Lassen and N. Recho</td>
<td></td>
</tr>
<tr>
<td>A Mixed Mode Fatigue Crack Growth Model Including the Residual Stress Effect Due to Weld</td>
<td>283</td>
</tr>
<tr>
<td>S. Ma, X. B. Zhang, N. Recho and J. Li</td>
<td></td>
</tr>
<tr>
<td>Effects of Shot Peening on Fatigue Property in SICP/Al-MMC</td>
<td>285</td>
</tr>
<tr>
<td>Y. Ochi, K. Masaki, T. Matsumura and T. Hamaguchi</td>
<td></td>
</tr>
<tr>
<td>Fatigue Behaviour of Friction Stir Welded 6061-T6 Aluminium Alloy</td>
<td>287</td>
</tr>
<tr>
<td>Y. Uematsu, K. Tokaji, Y. Tozaki and H. Shibata</td>
<td></td>
</tr>
<tr>
<td>Transformation of a Nonproportional Multiaxial Loading to an Equivalent Proportional Multiaxial Loading</td>
<td>289</td>
</tr>
<tr>
<td>A. Chamat, Z. Azari, M. Abbadi and F. Cocheteux</td>
<td></td>
</tr>
</tbody>
</table>

2T8. Polymers and Composites | 291 |
Acoustic Emission Monitoring of Delamination Growth in Fiber-Reinforced Polymer-Matrix Composites .. 291
 A. J. Brunner and M. Barbezat
Fracture Mechanics Versus Strength Concepts for Evaluation of Adhesion Quality 293
 B. Lauke
Alternative Approaches for the Evaluation of the Slow Crack Growth Resistance of Polyethylene Resins Used in the Production of Extruded Water Pipes 295
 F. M. Peres and C. G. Schon
A Stereoscopic Method for Fractographic Investigations of Ordinary Ceramics...... 297
 C. Manhart and H. Harmuth
Modelings of Fiber Deformation During Machining Aramid-FRP 299
 E. Nakanishi, M. Fukumori, Y. Sawaki and K. Isogimi
Quality Control and the Strength of Glass ... 301
 F. Veer, C. Louter and T. Romein
Experimental Study of Cracked Laminate Plates by Caustics 303
 G. A. Papadopoulos and E. Sideridis
Fracture of Composites in Military Aircraft .. 305
 R. Pell, N. Athiniotis and G. Clark
Analysis of 7005/AL2O3/10P MMC Sheets Joined by FSW by Thermoelasticity...... 307
 P. Cavaliere, G. L. Rossi, R. di Sante and M. Moretti
Surface Modification of Lightweight Aggregate and Properties of the Lightweight Aggregate Concrete .. 309
 T. Y. Lo and H. Z. Cui
Finite Element Based Prediction of Failure in Laminated Composite Plates 311
 H. Hosseini-Toudeshky, B. Hamidi, B. Mohammadi and H. R. Ovesi
An Embedded Cylindrical PZT with Electroded Imperfect Interface 313
 H. M. Shodja and S. M. Tabatabaei
Characterization of Composites for the Maeslant Storm Surge Barrier 315
 J. Degrieck, W. van Paepegem, L. van Schepdael, P. Samyn, P. de Baets, E. Suister and J. S. Leendertz
Weight Function, J-Integral and Material Forces Approach to Ceramic Multilayers.. 317
 J. Pascual, C. R. Chen, O. Kolednik, F. D. Fischer, R. Danzer and T. Lube
Assessment of Matrix Fatigue Damage in CFRP ... 319
 K. J. Cain and A. Plumtree
Progressive Failure of Composite Materials under Dynamic Loading 321
 L. Xing, X. Huang and K. Reifsnider
Aging Aircraft Transparencies: A Case History from Italian Air Force Fleet 323
 C. M. Bernabei, D. Caucci and C. L. Aiello
Fatigue Crack Growth in Quenched Amorphous Polymers PC and PET 325
 M. Kitagawa and D. Nishi
Thermo-Mechanical State of Bimaterial with an Interface Crack 327
 R. Martynyak, M. Matczynski and K. Honchar
Thermo-Mechanical State of Bimaterial with an Interface Crack 329
 M. Tarfaoui, S. Choukri, A. Neme and M. Mliha-Touati
Indentation Response of Fibre Reinforced Composite Laminates 331
 P. Bourke and I. Horsfall
Analysis of Tubular Composite Cylindrical Shells .. 333
 R. M. Gheshlaghi and M. H. Hojjati and H. R. M. Daniali
Contents

2T11. Fracture Mechanics Analysis

- Fracture Mechanics Analysis: Lefm vs. Gradient Model
 - A. Konstantinidis, N. Pugno, P. Cornetti and E. C. Aifantis
 - Influence of Austempering on Fracture Mechanics Parameters of 65 Si 7 Steel
 - D. Pustai, F. Cajner and M. Lovreni
- Modelling the Evolution of Elastic Symmetries of Growing Mixed-Mode Cracks
 - H. Schutte and K. M. Abbasi
- Effect of Aging on the Microstructure and Fracture of Aluminum-Lithium
 - J. M. Fragomeni
- Buckling of Multicracked Columns
 - C. Carloni, C. Gentilini and L. Nobile
- Experimental and Numerical Analysis of Interactions Between Stress
- Corrosion Cracks
 - M. Lamazouade, M. Touzet and M. Puiggali
- An Improved Upper Bound Limit Load Solution for Weld Strength anisotropic Overmatched Cracked Plates in Pure Bending
 - N. Kontchakova and S. Alexandrov
- Fracture Parameter Estimation of Alloy Steel Reinforced with Maraging Steel
 - S. Bhat, V. G. Ukadgaonker, M Jha and S. M. Nirgude
- Incorporation of Length Scales in Plane Stress Fracture Analysis
 - V. P. Naumenko
- Mode III Crack in a Functionally Graded Piezoelectric/Piezomagnetic Half Plane
 - W.-H. Hsu and C.-H. Chue
- Electro-Mechanical Field of a Piezoelectric Finite Wedge under Antiplane Loading
 - W.-J. Liu and C.-H. Chue
- Sensitivity of Crack Nucleation Parameters to the Geometric Imperfection
 - V. P. Naumenko and Yu. D. Skrypnyk

2T13. Probabilistic approaches to Fracture Mechanics

- An Experimental Evaluation of a Local Approach Model for Graded Materials
 - B. Bezensek, J. Flasler and J. W. Hancock
- A Stochastic Model for Crack Growth
 - C.-R. Chiang
- Stochastic Evaluation of Fatigue Crack Initiation and Propagation
 - G. S. Wang
A Weibull-Based Method to Predict the Strength of Adhesively Bonded Joints of Pultruded FRPS ... 375
 T. Vallée, J. R. Correia and T. Keller

2T14. Computational Fracture Mechanics ... 377
The Lateral Constraint Index as a New Factor to Assess the Influence of the Specimen Thickness .. 377
 A. Fernandez-Canteli, D. Fernandez-Zuniga and E. Castillo
Analysis of Crack Propagation in Alumina-Glass Functionally Graded Materials ... 379
 V. Cannillo, L. Lusvarghi, T. Manfredini, M. Montorsi, C. Siligardi and A. Sola
Numerical Solution of Integro-Differential Equations for Fracture Mechanics Problems ... 381
 A. V. Andreev
Analytical Method of Generating DA/DN Curve for Aerospace Alloys ... 383
 B. Farahmand
Thermo-Elastic Fracture of Edge Cracked Plate under Surface ‘Shock’ Loading ... 385
 B. P. Fillery, X. Hu and G. Fisher
Failure Prediction of IC Interconnect Structures Using Cohesive Zone Modelling ... 387
Non-Local Damage Simulation in Composites Using Crack Propagation and Mesh Adaptivity ... 389
 F. Reusch, C. Hortig and B. Svendsen
Elastic Wave Motion in a Cracked, Multi-Layered Geological Region under Transient Conditions ... 391
 P. S. Dineva, T. V. Rangelov and G. D. Manolis
Wood Beam Strengthened with Glass/Epoxy Composite Sheets ... 393
 G. E. Papakaliatakis, G-S. P. Diamantopoulos, P. A. Kalaitzidis and E. M. Marinakis
Computation of Dynamic Stress Intensity Factors Using Enriched Finite Elements ... 395
 M. Saribay and H. F. Nied
Partly Cracked Xfem Interface for Intersecting Cracks ... 397
 J. L. Asferg, T. Belytschko, P. N. Poulsen and L. O. Nielsen
On the Evaluation of Elastic Compliance Tensor Due to Growing Mixed-Mode Microcracks ... 399
 K. M. Abbasi and H. Schutte
On the Problem of Determination of Safety Factors for Machine-Building Parts Using the Finite Element Computations ... 401
 L. B. Getsov, B. Z. Margolin and D. G. Fedorchenko
Dynamic Explicit Cell Model Simulations in Porous Ductile Metals ... 403
 L. Siad and M. O. Ouali
Numerical Evaluation of Energy Release Rates for Bimaterials Interface Cracks ... 405
 M. Belhouari, B. B. Boutadjra, B. Boutabout and K. Kaddouri
Inclusion Effect on the Plastic Zone Size in Confined Plasticity ... 407
 M. Benguediab, M. Elmegueni, M. Nait-Abdelaziz and A. Imad
Modified Key-Curve-Method for Determination of Dynamic Crack Resistance Curves ... 409
U. Muhlich, A. Emrich and M. Kuna
A Coupled Computational Framework for Ductile Damage and Fracture 411

R. H. J. Peerlings, J. Mediavilla and M. G. D. Geers
Marble Discs under Distributed Loading: Theoretical, Numerical and Experimental
Study .. 413

Ch. Markides, E. Sarris, D. N. Pazis, Z. Agioutantis and S. K. Kourkoulis
Simulation of the Mechanical Behaviour of the Lumbar Intervertebral Disc........ 415

M. Satraki, E. A. Magnissalis, G. Ferentinos and S. K. Kourkoulis
The Pull-Out Strength of Transpedicular Screws in Posterior Spinal Fusion........ 417

P. Chazistergos, G. Ferentinos, E. A. Magnissalis and S. K. Kourkoulis
Mechanical Behavior Simulation of Hip Prostheses Stress Distributions Analysis 419

M. Kadi, R. Boulahia, K. Azouaoui, N. Ouali, A. Ahmed-Benyahia and T. Boukharouba
Dbem Analysis of Axisymmetric Crack Growth in a Piston Crown 421

Residual Shear Stresses and K_{II} Computation .. 423

W. Cheng and I. Finnie

2T15. Experimental Fracture Mechanics .. 425
Quantitative Interpretation of Crack Tip Strain Field Measurements……………… 425

A. M. Korsunsky
Mixed Mode (I+II) Stress Intensity Factor Measurement Using Image Correlation...
A. Shterenlikht, P. López-Crespo, P. J. Withers, J. R. Yates and E. A. Patterson
Fracture of Turbine Blades under Self-Exciting Modes .. 429
C. A. Sciammarella, C. Casavola, L. Lamberti and C. Pappalettere
Predicting Crack Arrest Behaviour of Structural Steels Using New Procedures...... 431
C. Gallo, J. A. Alvarez, F. Gutierrez-Solana and J. A. Polanco
Mechanical Properties of Large Plastic-Mold Steel Blooms. 433
M. Chiarbonello, D. Firrao, R. Gerosa, A. Ghidini, M. G. Ienco, P. Matteis,
G. Mortarino, A. Parodi, M. R. Pinoasco, B. Rivolta, G. Scavino, G. Silva,
E. Stagno and G. Ubertalli
Non-Linear Photoelastic Method for Study Fracture Problems.............................. 435
G. Albaut
Fatigue Crack Length Measurement Method with an Ion Sputtered Film ………… 437
G. Deng, K. Nasu, T. D. Redda and T. Nakanishi
Individual Fracture Events in Cellular Foods ... 439
H. Luyten, E. M. Castro-Prada, E. Timmerman, W. Lichtendonk
and T. van Vliet
Exfoliation Fracture Mode in Heavily Drawn Pearlitic Steels 441
J. Toribio and F. J. Ayaso
Investigation of Crack Closure by Using Thermoelectric Stress Analysis 443
L. Marsavina, R. A. Tomlinson, E. A. Patterson and J. R. Yates
Fracture Toughness Investigations of Severe Plastic Deformed Tungsten Alloys 445
M. Faleschini, W. Knabl and R. Pippan
Photoelastic Analysis of Mode I Stress Intensity Factor in Beams with Angular
Notches .. 447
M. Tabanyukhova and V. Pangaev
Full-Scale Experimental Investigations on Pressure Tubes Rupture of RBMK 449

N. Yu. Medvedeva, A. V. Andreev, S. V. Timkin, I. A. Peshkov, V. N. Zhilko,
D. Ye. Martysinouk and O. A. Poshtovaya

Study of Fracture Mechanism of Composite Material Buildings by Photoelasticity
and Photoelasitc Coating Methods... 451

O. Ivanova, G. Albaut, V. Mitasov, V. Nikiforovskij and M. Tabanyukhova

Fracture Energy in Mode I and Mode II of Textile Reinforced Wood......................... 453

R. Putzger and P. Haller

Measurement Based Performance Prediction of the Europabrucke Against Traffic
Loading .. 455

R. Veit and H. Wenzel

The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate............... 457

S. C. Forth, W. M. Johnston and B. R. Seshadri

Validity of the Caustics Method for Plates with Circular Hole............................. 459

P. Tsirigas, G. Kontos, D. N. Pazis, S. K. Kourkoulis and Z. Agioutantis

An Enhanced Normalization Method for Dynamic Fracture Toughness Testing 461

S. M. Graham and D. J. Stiles

The Potential Drop Technique for Measuring Crack Growth in Shear............... 463

V. Spitas and P. Michelin

A Modified DCB Geometry for CTOA Measurement in Thin Sheet 2024-T3
Aluminium Alloy .. 465

Could Cod Serve as Fracture Criterion in Case of Marble? 467

A. Marinelli, S. K. Kourkoulis and I. Vayas

2T16. Creep Fracture .. 469

Creep Rupture of a Lead-Free Sn-Ag-Cu Solder... 469

C.-K. Lin and D.-Y. Chu

Quantitative Evaluation of Acceleration Creep in Magnesium-Aluminum
Alloys at 0.65tm... 471

H. Sato

Long-Term Creep Rupture Prediction in Unidirectional Composites 473

J. Koyanagi, F. Ogawa and H. Kawada

A Computational Model for Cardboard Creep Fracture 475

J. Schonwalder, G. P. A. G. van Zijl and J. G. Rots

Creep Fracture of Binary and Ternary Commercial Aluminum Alloys................. 477

K. Ishikawa

Analysis of Creep Crack initiation and Growth in Laboratory Specimens 479

K. Wasmer

Temperature Gradient Effects on the Creep Behaviour of Structures................... 481

F. Vakili-Tahami and S. Hasanifard

2T17. Environment Assisted Fracture .. 483

A Surgical Implant Crevice-Assisted Corrosion Fatigue In-Body Failure 483

H. Amel-Farzad, M.-T. Peivandi and S. M.-R. Yosof-Sani

Asymptotically Stable Growth of Delaminations under Hydrogen Embrittlement
Conditions... 485
A. V. Balueva
Corrosion and Mechanical Strength of Russian Light Water Reactors 487

B. T. Timofeev
Corrosion Fatigue Characteristics of CF8A Steel Degraded at High Temperature 489

S.-C. Jang, D.-H. Bae, G.-Y. Lee, and S.-Y. Baek
Modeling Environment-Assisted Fatigue Crack Propagation 491

J.-A. Ruiz-Sabariego and S. Pommier

2T18. Dynamic, High Strain Rate, or Impact Fracture ... 493
Measuring the Fracture Resistance of Composites and Adhesively Bonded Joints at High Test Rates. .. 493

Quasistatic and Dynamic Fracture of Pearlitic Steel .. 495

B. Strnadel, P. Hausild and M. Karlik
Fragmentation in the Expanding Ring Experiment .. 497

H. Zhang and K. Ravi-Chandar
Influence of Friction on Results of an Instrumented Impact Test 499

I. V. Rokach
Influence of Moisture Content on the Dynamic Behaviour of Concrete 501

I. Vegt and J. Weerheijm
Strength and Toughness Properties of Steels under Dynamic Loading 503

J. Fang
Rubber Particle Size Effect on Impact Characteristics of PC/ABS (50/50) Blends 505

M. Nizar Machmud, Masaki Omiya, Hirotsugu Inoue and Kikuo Kishimoto
Effect of Strain Rate on Mechanical Properties of Reinforced Polyolefins 507

M. Schossig, C. Bieroegel, W. Grellmann, R. Bardenheier and T. Mecklenburg
Fracture Related Mechanical Properties of Aircraft Cast Aluminum Alloy A357 509

N. D. Alexopoulos
Shear Failure of Ti-6AL-4V by Direct Impact and analyse of the Process of Elastic and Plastic Wave Propagation ... 511

P. Chwalik, A. Rusinek and J. R. Klepaczkow
Evaluating of Fracture Mechanics Properties at Intermediate Strain Rates, Transferable to Components ... 513

P. Trubitiz, A. Ludwig, G. Pusch and H.-P. Winkler
Crack Resistance Determination From the Charpy Impact Test 515

R. Chaouadi
A Stochastic Interface Model for the Fracture of Bars ... 517

S. Nagy and F. Kun
The Anti-Penetration Properties of Space Armor ... 519

Tso-Liang Teng, Cho-Chung Liang and Cheng-Chung Lu
Key Curve Methods for Dynamic Fracture Mechanics of Cast Iron 521

W. Baer
Dynamic Tensile Behavior of Aramid Frp Using Split Hopkinson Bar Method....... 523

Y. Sawaki, J. Watanabe, E. Nakanishi and K. Isogimi

2T19. Damage Mechanics ... 525
Detection of Low-Velocity Impact Damage in Carbon-Epoxy Plates using NDT 525
A. M. Amaro, M. F. M. S. de Moura and P. N. B. Reis

Damage Accumulation at High Temperature Creep of a Single-Crystal Superalloy... 527
A. Staroselsky and B. Cassenti

Asymptotic Homogenisation for Heterogeneous Media with Evolving Microcracks 529
E. K. Agiasofitou, C. Dascalu and J. L. Auriault

On the Analysis of Damage Localization as Precursor of Macro-Cracks 531
H. Stumpf and K. Hackl

Fatigue Assessment Based on Statistical Analysis of Theoretical Parameters........... 533
J. Cacko

Determination of Ductile Damage Parameters by Local Deformation Fields 535
M. Kuna and M. Springmann

Fracture of Concrete Due to Corrosion... 537
N. Thanh, A. Millard, Y. Berthaud, S. Care and V. L’Hostis

2T21. Concrete and Rock .. 539

Experimental Study of Sprayed Concrete Strength Using Marble Aggregates 539
A. Sotiropoulou and Z. G. Pandermarakis

Analysis of the Behaviour of Interface Cracks in Gravity Dam 541
B. B. Bouiadjira, A. B. Bouiadjira, M. Belhouari and B. Serier

Application of Composite Mechanics to Composites Enhanced Concrete Structures 543
C. C. Chamis and P. K. Gotsis

Initiation and Coalescence of Local Damage on Blanco de Macael Marble......... 545
K. Mehiri, P. Vieville, P. Lipinski, A. Tidu and V. Tijeras

Influence of Concrete’s Mineralogical Components on Fracture Compressive and Tractive .. 547
M. P. Morales Alfaro and F. A. I. Darwish

Constitutive Model for Description of High-strain Rate Behavior of Concrete 549
I. R. Ionescu and O. Cazacu

Hydraulic Fracturing in Weak Rocks ... 551
P. Papanastasiou

Application of Fracture Mechanics on Unreinforced Concrete Walls.................. 553
T. Eck, B.-Gu Kang and W. Brameshuber

Subcritical Crack Growth in Rocks under Water Environment 555
Y. Nara, H. Kurata and K. Kaneko

2T22. Sandwich Structures ... 557

Stress Analysis and Prediction of Failure in Structurally Graded Sandwich Panels ... 557
A. Lyckegaard, E. Bozhevolnaya and O. T. Thomsen

Debonding and Kinking in Foam-Core Sandwich Beams...................................... 559

Modeling Core Failure by the Tsai–Wu Criterion in the Design of Foam-Core Sandwich Beams ... 561
E. E. Gdoutos, V. D. Balopoulos, P. A. Kalaitzidis and M. Konsta

Numerical Investigation of Crack Propagation in Sandwich Structures................ 563
E. E. Theotokoglou
Local Effects in Sandwich Beams: Modelling and Experimental Investigation........ 565
 M. Johannes, J. Jakobsen, V. Skvortsov, E. Bozhevolnaya
 and O. T. Thomsen

Typical In-Plane Response Surfaces for Prismatic Foam-Core Sandwich Beams 567
 V. D. Balopoulos, P. A. Kalaitzidis, D. A. Zacharopoulos
 and E. E. Gdoutos

2T23. Novel Testing and Evaluation Techniques .. 569

Non-Destructive Evaluation of Yield Strength Using a Novel Miniature Dumb-Bell
Specimen-An Empirical Approach ... 569
 G. Partheepan, D. K. Sehgal and R. K. Pandey

3D Measurement of the Strain Field Surrounding Crack Tip 571
 D. Vavrik, J. Bryscejn, J. Jakubek and J. Valach

Radiographic Observation of Damage Zone Evolution in High Ductile Specimen 573
 D. Vavrik, T. Holy, J. Jakubek, M. Jakubek and Z. Vykydal

Calibration of Fracture Parameters by Instrumented Indentation and Test
Simulation ... 575
 M. Bocciarelli, G. Bolzon and G. Maier

Internal Crack Detection and Analysis Using Thermoelastic Stress Analysis 577
 N. Sathon and J. M. Dulieu-Barton

Ultrahigh-Resolution Transversal Polarization-Sensitive Optical Coherence
Tomography: Structural Analysis and Strain-Mapping .. 579
 K. Wiesauer, M. Pircher, R. Engelke, G. Ahrens, G. Grutzner, R. Oster,
 C. K. Hitzenberger and D. Stifter

Application of Digital Shearography in Determining Opening Mode SIF in
Edge Cracks ... 581
 M. Ghassemieh, A. Ghazavizadeh and N. Soltani

Finite Element Modeling of Pulse Transient IR Thermography 583
 M. Krishnapillai, R. Jones, I. H. Marshall, M. Bannister and N. Rajic

A New Technique for the Machining of Natural Cracks .. 585
 N. P. Andrianopoulos and A. Pikrakis

Displacements Measurement in Irregularly Bounded Plates Using Mesh Free
Methods ... 587
 N. P. Andrianopoulos and A. P. Iliopoulos

Biaxial Strength Testing on Mini Specimens ... 589
 R. Danzer, P. Supancic, W. Harrer, T. Lube and A. Borger

Numerical Simulation of a Fracture Test for Brittle Disordered Materials 591
 T. Auer and H. Harmuth

2T26. Structural Integrity ... 593

Unification of the Out-of-Plane Constraint Loss in Centre-Cracked Panels 593
 B. Bezensek, A. Baron and J. W. Hancock

High Temperature Failure Assessment of Weldments ... 595
 B. Dogan, B. Petrovski and U. Ceyhan

Post-Tensioned Glass Beams .. 597
 C. Louter, J. van Heusden, F. Veer, J. Vambersky, H. de Boer
 and J. Versteegen
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Integrity of a NPP Using the Master Curve Approach</td>
<td>599</td>
</tr>
<tr>
<td>D. Ferreno, I. Gorrochategui, M. Scibetta, R. Lacalle, E. van Walle</td>
<td></td>
</tr>
<tr>
<td>and F. Gutierrez-Solana</td>
<td></td>
</tr>
<tr>
<td>FRP Consolidation for Masonry Arches by Using Bridged Crack Model</td>
<td>601</td>
</tr>
<tr>
<td>G. Ferro, M. Ipperico, V. Pignata and A. Carpinteri</td>
<td></td>
</tr>
<tr>
<td>Structural Reliability Analysis of Pipe Subjected to Reeling</td>
<td>603</td>
</tr>
<tr>
<td>H. A. Ernst, R. E. Bravo and F. Daguerre</td>
<td></td>
</tr>
<tr>
<td>Network Seismic Capability Assessment of Power High Voltage</td>
<td></td>
</tr>
<tr>
<td>Electric Equipment</td>
<td>605</td>
</tr>
<tr>
<td>I. Manea, C. Diaconu, C. Radu and M. Negru</td>
<td></td>
</tr>
<tr>
<td>FKM Guideline “Fracture Mechanics Proof of Strength for Engineering</td>
<td>607</td>
</tr>
<tr>
<td>Components” – Overview and Extension topics</td>
<td></td>
</tr>
<tr>
<td>B. Pyttel, I. Varfolomeyev and M. Luke</td>
<td></td>
</tr>
<tr>
<td>Static and Dynamic Behavior of a 3D-Periodic Structure</td>
<td>609</td>
</tr>
<tr>
<td>J. Rishmany, L. Renault, C. Mabru, R. Chieragatti and F. Rezaâ’Aria</td>
<td></td>
</tr>
<tr>
<td>Environmental Effect on Pipeline Steels: A Fitness for Service Perspective</td>
<td>611</td>
</tr>
<tr>
<td>J. A. Alvarez, F. Gutierrez-Solana and S. Cicerco</td>
<td></td>
</tr>
<tr>
<td>Finding the Australian Railway Load Spectrum Design and Assessment of Light Weight & Durable Railway Structural Components</td>
<td>613</td>
</tr>
<tr>
<td>R. Jones and J. Baker</td>
<td></td>
</tr>
<tr>
<td>Structural Integrity Assessment of Componets with Low Constraint</td>
<td>615</td>
</tr>
<tr>
<td>S. Cicer, F. Gutierrez-Solana and J. A. Alvarez</td>
<td></td>
</tr>
<tr>
<td>Life Assessment of Superheater Tubes Fabricated From 2.25CR-1MO Steel</td>
<td>617</td>
</tr>
<tr>
<td>S. Fujibayashi</td>
<td></td>
</tr>
<tr>
<td>Predicting Cleavage Fracture in Presence of Residual Stresses; A Numerical Case Study</td>
<td>619</td>
</tr>
<tr>
<td>S. Hadidi-Moud, C. E. Truman and D. J. Smith</td>
<td></td>
</tr>
<tr>
<td>A Necessary Condition for Cleavage on Laboratory Specimens and Structures</td>
<td>621</td>
</tr>
<tr>
<td>V. le Corre, S. Chapuliot, S. Degallaix and A. Fissolo</td>
<td></td>
</tr>
<tr>
<td>Safety Assessment of Components with Crack-Like Defects</td>
<td>623</td>
</tr>
<tr>
<td>Yu. G. Matvienko and O. A. Priymak</td>
<td></td>
</tr>
<tr>
<td>Numerical Analysis of Surface Cracks in Steam Generator Tubes</td>
<td>625</td>
</tr>
<tr>
<td>Z. Tonkovi, I. Skozrit and J. Sori</td>
<td></td>
</tr>
<tr>
<td>2T28. Mesostructure Mechanics</td>
<td>627</td>
</tr>
<tr>
<td>Tensile Simulation of Polymeric Material Considering the Meso-Scale Structure</td>
<td>627</td>
</tr>
<tr>
<td>A. Shinozaki, K. Kishimoto and I. Hirotugu</td>
<td></td>
</tr>
<tr>
<td>Microfracture and Strain Localization: A Computational Homogenization Approach</td>
<td>629</td>
</tr>
<tr>
<td>C. Dascalu, G. Bilbie and R. Chambon</td>
<td></td>
</tr>
<tr>
<td>Strain and Fracture at Mesoscale of Coated Materials</td>
<td>631</td>
</tr>
<tr>
<td>S. Panin</td>
<td></td>
</tr>
<tr>
<td>2T32. Micromechanisms in Fracture and Fatigue</td>
<td>633</td>
</tr>
<tr>
<td>Relating Cleavage Crack Nucleation to Cracked Carbides in A533B Steel</td>
<td>633</td>
</tr>
<tr>
<td>A. Kumar and S. G. Roberts</td>
<td></td>
</tr>
</tbody>
</table>
Micro-Energy Rates for Damage Tolerance and Durability of Composite Structures 635
 C. C. Chamis and L. Minnetyan
Micromechanical Observation of Fracture Process in Mortars 637
 E. Schlangen and O. Copuroglu
Micro-fracture Maps in Progressively Drawn Pearlitic Steels 639
 J. Toribio and F. J. Ayaso
A Brief History of Fractography ... 641
 S. P. Lynch and S. Moutsos

C. SPECIAL SYMPOSIA/SESSIONS
C1. Nanomaterials and Nanostructures ... 643

1. Fracture and Fatigue at the Micro and Nano Scales ... 645
Size Effects in Lead Free Solder-joints ... 645
 A. Betzwar-Kotas, G. Khatibi, A. Ziering, P. Zimprich, V. Groeger,
 B. Weiss and H. Ipsen
Micro-Scale Simulation of Impact Rupture in Polysilicon MEMS 647
 A. Corigliano, F. Cacchione, A. Frangi and B. de Masi
Nanoindentation of CNT Reinforced Epoxy Nanocomposites 649
 D. C. Lagoudas, P. R. Thakre and A. A. Benzerga
Diffusion Kinetics and Multivariant Phase Transformation in Shape Memory Alloys 651
 D. R. Mahapatra and R. V. N. Melnik

3. Nanoscale Deformation and Failure ... 653
EBSD Analysis on Deformation of Nanocrystals in ECAP-Processed Copper 653
 H. Kimura, Y. Akiniwa, K. Tanaka and T. Ishida
The Effect of Extensional Strains on Molecular Orientation, Polymer Free Volume
 H. Dong, R. Guo and K. I. Jacob
Microrotation-augmented Energy-Minimization for 3D Nanocrystalline Cu
 Structures ... 657
 M. A. Tschopp and D. L. McDowell
Mechanics and Electromechanics of Single Crystalline Piezoelectric Nanowires 659
 M.-F. Yu, Z. Wang, J. Hu and A. Suryavanshi
Multiscale Simulation for High Speed Propagation of Disordered Regions 661
 W. Yang, X. Li and Z. Guo
Surface-Stress-Driven Pseudoelasticity and Shape Memory Effect at the Nanoscale. 663
 W. Liang and M. Zhou
Thermomechanical Behavior of Zinc Oxide Nanobelts ... 665
 A. Kulkarni and M. Zhou
Natural Modes of C60 Cage via Carbon-Carbon Bonding Element 667
 P. Zeng, X.-G. Y. and J. Du

11. Deformation and Fracture at the Nano Scale .. 669
Fracture of Nanocrystalline Aluminum ... 669
C. San Marchi, S. L. Robinson, N. Y. C. Yang and E. J. Lavernia
Wear and Fatigue in Silicon Structural Films for MEMS Applications 671

Indentation Induced Through Thickness Film Fracture on Engineering Alloys 673

D. F. Bahr, K. R. Morasch and A. Alamr
Surface Nanostructured Aluminum by Severe Plastics Deformation 675

E. I. Meletis, K. Y. Wang and J. C. Jiang
Contribution of Localized Deformation to IGSCC and IASCC in Austenitic
Stainless Steels ... 677

G. S. Was, Z. Jiao and J. T. Busby
A Study of Crack-Dislocations Interaction with 3D Discrete Dislocation Dynamics . 679

I. N. Mastorakos and H. M. Zbib
Numerical Simulations and Measurements of Cracks Parallel and Near Interfaces
in Graded Structures ... 681

I. Reimanis, K. Rozenburg, J. Berger, M. Tilbrook and M. Hoffmann
Deformation and Failure Processes Operating in Ultra-Fine Grain Metals 683

K. Hattar, I. M. Robertson, J. Han, T. Saif, S. J. Hearne and D. Follstaedt
Simulation of Cross-Sectional Nanoindentation in Interconnect Structures with
Cohesive Elements ... 685

D. Gonzalez, J. Molina, I. Ocana, M. R. Elizalde, J. M. Sanchez,
J. M. Martinez-Esnal, J. Gil-Sevillano, G. Xu, D. Pantuso, T. Scherban,
B. Sun, B. Miner, J. He and J. Maiz
Fracture Between Two Self-Assembled Monolayers .. 687

K. M. Liechti and D. Xu
Nanotube Nanoactuator .. 689

M.-F. Yu, J. Hu, Z. Wang and A. Suryavanshi
Nanocrack Detection in Vibrating Nanowires .. 691

R. Ruoff, L. Calabri, N. Pugno, X. Chen, W. Ding and K. Kohlhaas
Fracture of atomic Layer Deposited Nanolaminate Films 693

N. R. Moody, J. M. Jungk, T. M. Mayer, R. A. Wind, S. M. George
and W. W. Gerberich
Influence of Microstructure, Strength and Adhesion on Au Electrodeposits 695

N. Yang, J. Kelly, T. Headley and C. S. Marchi
Fracture of Submicron Thin Metal Films During Cyclic Loading 697

S. Eve, D. Wang, C. Volkert, N. Huber and O. Kraft
Micromechanics of Damage Evolution in Solid Propellants 699

N. Aravas, F. Xu and P. Sofronis
Deformation and Failure Mechanisms in Metallic Nanolayered Composites 701

R. G. Hoagland, J. P. Hirth, and A. Misra
Dislocation Source Sensitivity of Plasticity and Fracture in Tungsten 703

J. E. Talia and R. Gibala
Delamination of Thin Metal Films on Polymers ... 705

A. Pundt, E. Nikitin, and R. Kirchheim
Fracture Mechanics of One-Dimensional Nanostructures 707

W. Ding, L. Calabria, K. M. Kohlhaas, X. Chen and R. S. Ruoff
Effects of Structure and Bonding at Surfaces and Interfaces on Fracture 709

S. P. Lynch, S. Moutsos, B. Gable, S. Knight, D. P. Edwards
29. Reliability and Failure Analysis of Electronics and Mechanical Systems

Application of the New Static Photoelastic Experimental Hybrid Method with New Numerical Method to the Plane Fracture Mechanics

J.-S. Hawong, J.-H. Nam, O.-S. Kwon and K. Tche

Risk Analysis of Buried Pipeline using Probabilistic Method

O. S. Lee, D. H. Kim and N. H. Myoung

Reliability Estimation of Solder Joint by Accelerated Life Tests

O. S. Lee, N. H. Myoung and D. H. Kim

Analysis of Engineering Plastic Behaviors in Thermal Stress Condition

S. I. Ham, D. J. Choi and S. D. Park

A Mechanistic Model for the Thermal Fatigue Behavior of the Lead-Free Solder Joints

I. Kim, T.-S. Park and S.-B. Lee

Mechanical Behavior of Metallic Thin Film on Polyimide Substrate

D.-C. Baek, S.-Y. Kim and S.-B. Lee

31. Multiscaling in Molecular and Continuum Mechanics - Scaling in Time and Size From Macro to Nano

Macro-, Meso- and Micro-damage Model Based on Singularity Representation for Anti-plane Deformation

G. C. Sih and X. S. Tang

Multiscaling Effects in Trip Steels

G. N. Haidemenopoulos and N. Aravas

A Hyper-Surface for the Combined Rate and Size Effects on the Material Properties

Z. Chen, L. Shen, Y. Gan and H. E. Fang

34. Cracks in Micro- and Nanoelectronics

A New Method for Local Strain Field Analysis Near Cracks in Micro- and Nanotechnology Applications

B. Michel, D. Vogel, N. Sabate and D. Lieske

Experimental Investigations for Fracture Analysis of Solder Joints in Microelectronic and MEMS Applications

H. Walter, C. Bombach, R. Dudek, W. Faust and B. Michel

Simulation of Interface Cracks in Microelectronic Packaging

J. Auersperg, B. Seiler, E. Cadalen, R. Dudek and B. Michel

AFM Based Fracture Analysis in Micro- and Nanomaterials

J. Keller, A. Gollhardt, D. Vogel and B. Michel

Simulation of Deformation and Fracture Behaviour in Microelectronic Packaging

O. Wittler, H. Walter, J. Keller, R. Dudek, D. Vogel and B. Michel

43. Interfacial Fracture in Composites and Electronic Packaging Materials

Mixed-Mode Fracture Modeled Through a Discrete Cohesive Zone Model-DCZM

D. Xie and A. M. Waas

Significance of K-Dominance in Delamination Cracking in Composite Laminates

C. T. Sun and Z. Yang
Contents

Evaluation of Interface Toughness Between Submicron Island and Substrate............ 743
H. Hirakata, T. Kitamura, S. Matsumoto and Y. Takahashi

Three-Dimensional Thermal Stress Analysis Considering the Stress Singularity for Bonded Structures ... 745
H. Koguchi

Center of Dilatation and Penny-Shaped Crack in Viscoelastic Bimaterial 747
K. T. Chau, R. C. K. Wong and Y. Z. Sun

Fracture Analysis on Popcorning of Plastic Packages During Solder Reflow 749
S. W. R. Lee and D. C. Y. Lau

Delamination of PB-Free Flip Chip Underfill During 2nd Level Interconnect Reflow .. 751
S. Chung, Z. Tang and S. Park

Reliability of Interfaces Between Components in Advanced Electronic Packages under Solder Reflow Process .. 753
T. Ikeda and N. Miyazaki

Three-Dimensional Stress Intensity Factors Analyses of Interface Cracks Between Dissimilar Anisotropic Materials 755
M. Nagai, T. Ikeda, N. Miyazaki

Molecular Dynamics of Interfacial Fracture.. 757
T. E. Tay, V. B. C. Tan and M. Deng

C. SPECIAL SYMPOSIA/SESSIONS

C2. Engineering Materials and Structures... 759

4. Fracture and Fatigue of Elastomers ... 761

Nucleation, Growth and Instability of the Cavitation in Rubber 761
E. Bayraktar, K. Bessri and C. Bathias

Engineering Fracture Mechanics for Crack Toughness Characterisation of Elastomers .. 763
K. Reincke, W. Grellmann and G. Heinrich

Multiaxial Fatigue Crack Initiation on Filled Rubbers : Statistical Aspects 765
L. Laiarinandrasana, A. Bennani and R. Piques

Fracture Criteria of Rubber-like Materials under Plane Stress Loadings 767
A. Hamdi, M. Nait-Abdelaziz, N. Ait Hocine and P. Heuillet

Prediction of Rubber Fatigue Life under Multiaxial Loading 769
A. Zine, N. Benseddiq, M. Nait-Abdelaziz and N. Ait Hocine

Modeling of Biaxial Fatigue of Natural Rubber .. 771
S. Dong, C. Bathias, K. le Gorjo, F. Hourlier and J. F. Vitorri

Modeling of Crack Propagation in Elastomeric Materials Using Configurational Forces .. 773
T. Horst and G. Heinrich

Determination of Inter-Fibre-Failure in Complex, Reinforced Composites 775
V. Trappe and H. Ivers

The Test Frequency Dependence of the Fatigue Behavior of Elastomers 777
Z. Major, Ch. Feichter, R. Steinberger and R. W. Lang
5. Integrity of Dynamical Systems .. 779
 Nonlinear Model for Reinforced Concrete Frames Loaded by Seismic forces 779
 D. Kovacevic
 Monitoring the Durability Performances of Concrete and Masonry Structures by
 Acoustic Emission Technique .. 781
 A. Carpinteri and G. Lacidogna
 Bifurcation Control of Parametric Resonance in Axially Excited Cantilever Beam .. 783
 H. Yabuno and M. Hasegawa
 Adaptive Properties of Dynamic Objects.. 785
 I. I. Blekhman and L. A. Vaisberg
 Influence of Addendum Modification Coefficient on the Gear's Load Capacity 787
 I. Atanasovska and V. Nikoli-Stanojevi
 Micromechanical Modelling of Fracture-induced Anisotropy and Damage in
 Orthotropic Materials ... 789
 V. Monchiet, I.-C. Gruescu, D. Kondo and O. Cazacu
 Vibration Control Devices and their Application ... 791
 K. Nagaya
 Measurements of Dynamical System Integrity and Fracture Mechanics 793
 K. S. Hediri
 Modeling of the Surface Cracks and Fatigue Life Estimation 795
 K. Maksimovic, S. Maksimovic and V. Nikolic-Stanojevic
 Structural Damage Detection via the Subspace Identification Method 797
 M. Trajkovic, D. Sumarac and M. Mijalkovic
 Clock Mechanism as Base of Artillery Safety and Arming Devices 799
 M. Ugrcic
 Twisting Deformation Evolution of Drilling Ropes .. 801
 N. P. Puchko
 Hereditary Strain Theory of Syntetic and Steel Ropes .. 803
 O. O. Goroshko
 Brittle and Ductile Failure in Thermoviscoplastic Solids under Dynamic Loading 805
 R. C. Batra and B. M. Love
 Some Aspects of Dynamic interfacial Crack Growth ... 807
 R. R. Nikolic and J. M. Veljkovic
 On Stability Problems of Periodic Impact Motions .. 809
 S. Mitic
 Dynamical Integrity of Nonlinear Mechanical Oscillators .. 811
 S. Lenci and G. Rega

8. Modelling of Material Property Data and Fracture Mechanisms 813
 Fatigue Crack initiation and Propagation at High Temperature in a Softening
 Martensitic Steel ... 813
 B. Fournier, M. Sauzay, M. Mottot, V. Rabeau, A. Bougault and A. Pineau
 Transferability of Cleavage Fracture Parameters Between Notched and Cracked
 Geometries ... 815
 C. Bouchet, B. Tanguy, J. Besson, A. Pineau and S. Bugat
 Relation Between Crack Velocity and Crack Arrest ... 817
 M. Hajjaj, C. Berdin, P. Bompard and S. Bugat
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanisms of Damage and Fracture in Trip Assisted Multiphase Steels</td>
<td>819</td>
</tr>
<tr>
<td>G. Lacroix, Q. Furnemont, P. J. Jacques and T. Pardoen</td>
<td></td>
</tr>
<tr>
<td>The Role of Sub-Boundaries in the Brittle Fracture of Polycrystalline</td>
<td>821</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>G. Hughes, P. Flewitt, F. Sorbello, G. Smith and A. Crocker</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Modelling of Fracture in Polycrystals</td>
<td>823</td>
</tr>
<tr>
<td>G. Smith, A. Crocker, G. Hughes and P. Flewitt</td>
<td></td>
</tr>
<tr>
<td>Anti-Wing Crack Growth from Surface Flaw in Real Rock under Uniaxial</td>
<td>825</td>
</tr>
<tr>
<td>Compression</td>
<td></td>
</tr>
<tr>
<td>Mechanical Behavior Modeling in the Presence of Strain Aging</td>
<td>827</td>
</tr>
<tr>
<td>J. Belotteau, C. Berdin, S. Forest, A. Parrot and C. Prioul</td>
<td></td>
</tr>
<tr>
<td>On the Local Conditions for Cleavage Initiation in Ferritic Steels</td>
<td>829</td>
</tr>
<tr>
<td>J. Hohe, V. Friedmann and D. Siegele</td>
<td></td>
</tr>
<tr>
<td>Unified Constitutive Equations to Describe Elastoplastic and Damage Behavior of X100 Pipeline Steel</td>
<td>831</td>
</tr>
<tr>
<td>T. T. Luu, B. Tanguy, J. Besson, A. Pineau and G. Perrin</td>
<td></td>
</tr>
<tr>
<td>Estimation of Lower Bound Engineering Fracture Toughness in the Ductile to Brittle Transition Regime</td>
<td>833</td>
</tr>
<tr>
<td>R. Moskovic and R. A. Ainsworth</td>
<td></td>
</tr>
<tr>
<td>Cleavage Fracture Micromechanisms Related to WPS Effect in RPV Steel</td>
<td>835</td>
</tr>
<tr>
<td>S. R. Bordet, B. Tanguy, S. Bugat, D. Moinereau and A. Pineau</td>
<td></td>
</tr>
<tr>
<td>Modelling of Fatigue Damage in Aluminum Cylinder Heads</td>
<td>837</td>
</tr>
<tr>
<td>R. Salapete, B. Barlas, E. Nicouleau, D. Massinon, G. Cailletaud and A. Pineau</td>
<td></td>
</tr>
<tr>
<td>Local Approach to High Temperature Ductility Modeling in 6XXX Aluminium Alloys</td>
<td>839</td>
</tr>
<tr>
<td>D. Lassance, D. Fabregue, F. Delannay and T. Pardoen</td>
<td></td>
</tr>
<tr>
<td>Small Fatigue Crack Growth in Steel-Compressor Disks of Aircraft Engines</td>
<td>841</td>
</tr>
<tr>
<td>A. A. Shanyavskiy and A. Yu. Potapenko</td>
<td></td>
</tr>
<tr>
<td>Micromechanisms of Damage in Multiaxial Fatigue of an Austenitic-Ferritic Stainless Steel</td>
<td>843</td>
</tr>
<tr>
<td>A. el Bartali, V. Aubin, S. Degallaix and L. Sabatier</td>
<td></td>
</tr>
<tr>
<td>Multiscale Modeling of Fracture and Plasticity in Layered Structures</td>
<td>845</td>
</tr>
<tr>
<td>A. Hartmaier, N. Brodling and H. Gao</td>
<td></td>
</tr>
<tr>
<td>Critical and Fracture Planes of 18G2A Steel under Non-Proportional Combined Bending and Torsion</td>
<td>847</td>
</tr>
<tr>
<td>A. Karoleczuk and E. Macha</td>
<td></td>
</tr>
<tr>
<td>Slip Processes and Fracture in Iron Crystals</td>
<td>849</td>
</tr>
<tr>
<td>V. Pelikan, P. Hora, A. Machoval and M. Landa</td>
<td></td>
</tr>
<tr>
<td>A Discussion of the Applicability of DK-Values to Explain the Fatigue Crack Growth Behaviour of Short Cracks</td>
<td>851</td>
</tr>
<tr>
<td>A. Tesch, H. Doker, K. H. Trautmann, R. Pippan and C. Escobedo</td>
<td></td>
</tr>
<tr>
<td>Simulation of Crack Growth under Low Cycle Fatigue at High Temperature in a Single Crystal Superalloy</td>
<td>853</td>
</tr>
<tr>
<td>B. Fedelich, Y. Kiyak, T. May and A. Pfennig</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fatigue Crack Growth for Different Ratios of Bending to Torsion in ALCU4MG1</td>
<td>855</td>
</tr>
<tr>
<td>D. Rozumek and E. Macha</td>
<td></td>
</tr>
<tr>
<td>Ductile Damage Models Applied to Anisotropic Fracture of Al2024 T351</td>
<td>857</td>
</tr>
<tr>
<td>D. Steglich, W. Brocks and T. Pardoen</td>
<td></td>
</tr>
<tr>
<td>Fatigue and Fracture Processes in Severe Plastic Deformed Rail Steels</td>
<td>859</td>
</tr>
<tr>
<td>F. Wetscher, R. Pippan and R. Stock</td>
<td></td>
</tr>
<tr>
<td>Damage Evolution in Torsion Specimens Deformed at Forging Temperatures</td>
<td>861</td>
</tr>
<tr>
<td>G. Trattnig, R. Pippan and S. Kleber</td>
<td></td>
</tr>
<tr>
<td>Microstructural Effects on Short Fatigue Crack Propagation and their Modelling</td>
<td>863</td>
</tr>
<tr>
<td>Micromechanical Aspects of Transgranular and Intergranular Failure Competition</td>
<td>865</td>
</tr>
<tr>
<td>I. Dlouhy and M. Holzmann</td>
<td></td>
</tr>
<tr>
<td>Defect in Ultra-fine Grained Mg-based Alloys Deformed by High-Pressure Torsion</td>
<td>867</td>
</tr>
<tr>
<td>J. Cizek, I. Prochazka, B. Smola, I. Stulikova, R. Kuzel, Z. Matej and V. Cherkaska</td>
<td></td>
</tr>
<tr>
<td>Modelling Crack-Tip Shielding Effects in Particle Reinforced Composites</td>
<td>869</td>
</tr>
<tr>
<td>J. Hornikova, P. Sandera and J. Pokluda</td>
<td></td>
</tr>
<tr>
<td>Early Stages of Fatigue Damage in 316l Steel</td>
<td>871</td>
</tr>
<tr>
<td>J. Man, K. Obrtlik, J. Polak and P. Klapetek</td>
<td></td>
</tr>
<tr>
<td>AB Initio Study of Elasticity and Strength of Nano-Fibre Reinforced Composites</td>
<td>873</td>
</tr>
<tr>
<td>M. Cerny and J. Pokluda</td>
<td></td>
</tr>
<tr>
<td>Strength and Fracture of Ultra-Fine Grained Aluminum 2024 ECAP Metal</td>
<td>875</td>
</tr>
<tr>
<td>K. B. Yoon, Y. W. Ma, J. W. Choi and S. H. Kim</td>
<td></td>
</tr>
<tr>
<td>Fatigue Lifetime of Bearing Steel in Ultra-High-Cycle Region</td>
<td>877</td>
</tr>
<tr>
<td>L. Kunz, P. Lukas, M. Cincala and G. Nicoletto</td>
<td></td>
</tr>
<tr>
<td>Calculation of K-Factor and T-Stress for Crack at Anisotropic Bimaterials</td>
<td>879</td>
</tr>
<tr>
<td>M. Kotoul, T. Profant and O. Sevecek</td>
<td></td>
</tr>
<tr>
<td>Interaction of Microcracks with Grain Boundaries: Systematical Investigation of the Mechanisms</td>
<td>881</td>
</tr>
<tr>
<td>M. Marx, W. Schaf and H. Vehoff</td>
<td></td>
</tr>
<tr>
<td>Dislocation Arrangements in Cyclically Strained Inconel 713LC</td>
<td>883</td>
</tr>
<tr>
<td>M. Petrenec, K. Obrtlik and J. Polak</td>
<td></td>
</tr>
<tr>
<td>Crack Initiation and Fracture of Metal Matrix Composites</td>
<td>885</td>
</tr>
<tr>
<td>K. Unterweger and O. Kolednik</td>
<td></td>
</tr>
<tr>
<td>Mechanical Behaviour of Ultra-Fine Grained Austenitic Stainless Steel</td>
<td>887</td>
</tr>
<tr>
<td>Tribological Properties and Wear Mechanisms of Wear Resistant</td>
<td></td>
</tr>
<tr>
<td>Thermally Sprayed Coatings</td>
<td>889</td>
</tr>
<tr>
<td>Sa. Houdkova, F. Zahalka and R. Enzl</td>
<td></td>
</tr>
<tr>
<td>Crack Propagation Resistance and Damage Mechanisms in Nuclear Graphite</td>
<td>891</td>
</tr>
<tr>
<td>A. Hodgkins, J. Marrow, P. Mummery, A. Fok and B. J. Marsden</td>
<td></td>
</tr>
<tr>
<td>Environment-assisted Cracking of High-Strength Magnesium Alloys WE43-T6</td>
<td>893</td>
</tr>
<tr>
<td>A. Ahmad and T. J. Marrow</td>
<td></td>
</tr>
<tr>
<td>Effects of Surface Finish on the Fatigue Limit in Austenitic Stainless Steels (Modelling and Experimental Observations)</td>
<td>895</td>
</tr>
<tr>
<td>M. Kuroda, T. J. Marrow and A. Sherry</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Intergranular Stress Corrosion Crack Propagation in Sensitised Austenitic Stainless Steel (Microstructure Modelling and Experimental Observation)</td>
<td>897</td>
</tr>
<tr>
<td>Ideal Strength of Nanoscale Thin Films</td>
<td>899</td>
</tr>
<tr>
<td>T. Kitamura, Y. Umeno and A. Kushima</td>
<td></td>
</tr>
<tr>
<td>Toughness Variability</td>
<td>901</td>
</tr>
<tr>
<td>R. Bouchard, G. Shen and W. R. Tyson</td>
<td></td>
</tr>
<tr>
<td>Thermo-Mechanical Behaviour of Nanostructured Copper</td>
<td>903</td>
</tr>
<tr>
<td>C. Duhamel, S. Guerin, M. J. Hytch and Y. Champion</td>
<td></td>
</tr>
<tr>
<td>Some Insights into Fatigue Crack Initiation Stage</td>
<td>905</td>
</tr>
<tr>
<td>H. Alush and Y. Katz</td>
<td></td>
</tr>
<tr>
<td>Fatigue Behaviour of Metallic Materials Exposed to High Pressure Hydrogen Environments</td>
<td>907</td>
</tr>
<tr>
<td>Y. Mine, S. Matsuoka, Y. Murakami C. Narazaki and T. Kanezaki</td>
<td></td>
</tr>
<tr>
<td>In-Situ Investigations of the Fracture Mechanisms at Various Length Scales</td>
<td>909</td>
</tr>
<tr>
<td>Z. Pakiela, W. Zielinski and K. J. Kurzydlowski</td>
<td></td>
</tr>
<tr>
<td>12. Interface Fracture and Behavior of Joints</td>
<td>911</td>
</tr>
<tr>
<td>Environmental Attack at Polymer/Metal Interfaces</td>
<td>911</td>
</tr>
<tr>
<td>Modelling of Elastic-Plastic Peel Tests for Structural Adhesives</td>
<td>913</td>
</tr>
<tr>
<td>A. J. Kinloch, H. Hadavina, L. Kawashita, D. R. Moore and J. G. Williams</td>
<td></td>
</tr>
<tr>
<td>An Alternating Crack Growth in Adhesively Bonded Joints</td>
<td>915</td>
</tr>
<tr>
<td>A. R. Akisanya</td>
<td></td>
</tr>
<tr>
<td>Measurements of Interface Fracture and Mechanical Properties of Low-K Dielectric Thin Films</td>
<td>917</td>
</tr>
<tr>
<td>F. Atrash and D. Sherman</td>
<td></td>
</tr>
<tr>
<td>Initiation of Fracture Mechanisms at the Fibre/Matrix interface</td>
<td>919</td>
</tr>
<tr>
<td>E. Martin, B. Poitou and D. Leguillon</td>
<td></td>
</tr>
<tr>
<td>Effects of Plasticity and Residual Stress for Cracks Near Interfaces</td>
<td>921</td>
</tr>
<tr>
<td>I. Reimanis, K. Rozenburg, M. Tilbrook and M. Hoffmann</td>
<td></td>
</tr>
<tr>
<td>Toughness of a ±45° Interface</td>
<td>923</td>
</tr>
<tr>
<td>L. Banks-Sills, Y. Freed, R. Eliasi and V. Fourman</td>
<td></td>
</tr>
<tr>
<td>Residual Stress Influence on Dissimilar Material Weld Junction Fracture</td>
<td>925</td>
</tr>
<tr>
<td>P. Gilles and M.-F. Cipiere</td>
<td></td>
</tr>
<tr>
<td>Fracture Mechanisms of a Thin Elastic Plastic Laminate</td>
<td>927</td>
</tr>
<tr>
<td>C. Bjerken, S. Kao-Walter and P. Stahle</td>
<td></td>
</tr>
<tr>
<td>Crack-Tip Parameters in Polycrystalline Plates with Compliant Grain Boundaries</td>
<td>929</td>
</tr>
<tr>
<td>R. Ballarini and Y. Wang</td>
<td></td>
</tr>
<tr>
<td>Extended Fe Simulations of Crack Growth in Layered and Functionally Graded Materials</td>
<td>931</td>
</tr>
<tr>
<td>C. Comi and S. Mariani</td>
<td></td>
</tr>
<tr>
<td>13. Computational Fracture Mechanics</td>
<td>933</td>
</tr>
<tr>
<td>Simulation of Plastic Fatigue Crack Growth by a Two Scale Extended Finite Element Method</td>
<td>933</td>
</tr>
</tbody>
</table>
A. Gravouil, T. Elguedj and A. Combescure
Accurate Determination of Cohesive Crack Tip Fields using Xfem and Admissible Stress Recovery... 935

B. L. Karihaloo, Q. Z. Xiao and X. Y. Liu
A New Generation of Boundary Element Method for Damage Tolerance Assessment of Aerostructures.. 937

M. H. Aliabadi
Robust Stress Intensity Factors Evaluation for 3D Fracture Mechanics with X-FEM .. 939

H. Minnebo, E. Bechet and N. Moes
A Micro-Macro Partition of Unity Method for Crack Propagation....................... 941

P. A. Guidault, O. Allix, L. Champaney and C. Cornuault
A Dynamic Crack Propagation Criteria for XFEM, Based on Path-Independent Integral Evaluation.. 943

I. Nistor, S. Caperaa and O. Pantale
Truss Model as Simple Computational Tool in Fracture Mechanics..................... 945

P. G. Papadopoulos, D. Plasatis and P. Lambrou
Finite Element Modeling of Cohesive Cracks by Nitsche's Method.................... 947

P. Hansbo and P. Heintz
Computing Crack Growth in Quasiperiodic Alloys.. 949

P. M. Mariano and F. L. Stazi
X-FEM for 3D Cracks in Shaft with Contact .. 951

S. Geniaut, P. Massin and N. Moes
Some Improvements for Extended Finite Element Methods in Fracture Mechanics. 953

P. Laborde, J. Pommier, Y. Renard and M. Salaun

14. Cohesive Models of Fracture ... 955
Failure Prediction of Adhesively Bonded T-Peel Joints 955

A. Pirondi
An Approach for the Determination of Mixed Mode Cohesive Laws................ 957

B. F. Sorensen and T. K. Jacobsen
The Use of CZM for Coupled Fatigue/Plasticity Crack Propagation Simulation.... 959

Jl. Bouvard, F. Feyel and Jl. Chaboche
Dynamic Crack Growth: Analytical and Numerical CZM Approaches 961

G. Debruyne, J. Laverne and P. E. Dumouchel
Simulation of Pre-Critical Cracking in Concrete Using 3D Lattice Model 963

H.-K. Man and J. G. M. Van Mier
Effect of Cohesive Law and Triaxiality Dependence of Cohesive Parameters in Ductile Tearing... 965

I. Scheider, F. Hachez and W. Brocks
Modeling Quasibrittle Material Cracking with Cohesive Cracks: Experimental and Computational Advances .. 967

Pinwheel Meshes and Branching of Cohesive Cracks.. 969

P. Ganguly and K. D. Papoulia
A Dynamic Crack Growth Simulation Using Cohesive Elements 971

M. Anvari and C. Thaulow
A New Cohesive Zone Model for Mixed-Mode Decohesion 973
M. J. van Den Bosch, P. J. G. Schreurs and M. G. D. Geers

Cohesive-Zone Modeling of Crack Growth in Specimens with Different Constraint
Conditions ... 975
C. R. Chen, O. Kolednik and F. D. Fischer

Effect of Anisotropic Plasticity on Mixed Mode Interface Crack Growth 977
V. Tvergaard and B. N. Legarth

16. Environment Assisted Fracture .. 979
Characterisation of TG-SCC in Pure Magnesium and AZ91 Alloy 979
N. Winzer, G. Song, A. Atrens, W. Dietzel and C. Blawert

Hydrogen Embrittlement and Cracking of 18MN-4CR Steels 981
A. Balitskii

Transient Stress and EAC of Steam Turbine Disc Steel 983
A. Turnbull and S. Zhou

Irreversible Hydrogen Trapping in Welded Beta-21S Titanium Alloy 985
D. Eliezer, E. Tal-Gutelmacher, C. E. Cross and Th. Boellinghaus

EAC in High Strength Steels for Gas Transportation ... 987
G. Gabietta and R. Bruschi

High Temperature Fatigue Crack Growth in Titanium Microstructures 989
H. Ghonem

Corrosion Damaging and Corrosion Fatigue Assessment in Three-Layered
Metallic Material .. 991
I. M. Dmytrakh and V. V. Panasyuk

Simulation of Hydrogen Assisted Stress Corrosion Cracking Using a Time
Dependent Cohesive Model ... 993
I. Scheider, M. Pfuff and W. Dietzel

Environmental Stress Cracking of Polyethylene Pipes in Water Distribution
Networks ... 995
J. P. Dear, N. S. Mason and M. Poulton

Fatigue Crack Propagation in 2XXX Aluminium Alloys at 223K 997
C. Gasqueres, C. Sarrazin-Baudoux, D. Dumont and J. Petit

Hydrogen Assisted Cracking Paths in Oriented Pearlitic Microstructures 999
J. Toribio and E. Ovejero

Effect of Residual Stress-Strain Profile on Hydrogen Embrittlement Susceptibility
of Prestressing Steel Wires .. 1001
J. Toribio and V. Kharin

Hydrogen Embrittlement of Austenitic Stainless Steels at Low Temperatures 1003
L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa

Hydrogen Diffusion and EAC of Pipeline Steels under Cathodic Protection 1005
M. Cabrini and T. Pastore

Initiation of Environmentally Assisted Cracking in Line Pipe Steel 1007
M. Elboujdaini

Fatigue Crack Growth Behaviour Depending on Environment in Magnesium
Alloys ... 1009
M. Nakajima, K. Tokaji, Y. Uematsu and T. Shimizu
Assessment of High-Temperature Hydrogen Degradation of Power Equipment Steels .. 1011
H. M. Nykyforchyn and O. Z. Student

Stress Corrosion Cracking of 18MN-4CR Generator Rotor End-retaining Ring Steel .. 1013
N. Mukhopadhyay and U. K. Chatterjee

17. SIM, Philosophy, Instrumentation and Analysis .. 1015
Non Contacting Stress Monitoring ... 1015
W. D. Dover, R. F. Kare and N. Stone
Rapid Calculation of Stress Intensity Factors ... 1017
A. J. Love and F. P. Brennan
Variable Amplitude Corrosion Fatigue of High Strength Weldable Steel 1019
S. S. Ngiam and F. P. Brennan
Crack Monitoring using ACFM .. 1021
R. F. Kare

18. Fracture of Biomaterials .. 1023
Fatigue Behaviour of Fiber Reinforced Bone Cement .. 1023
B. Kumar and F. W. Cooke
Fracture and Fatigue of Bone and Bone Cement: The Critical Distance Approach. 1025
D. Taylor, D. Hoey, L. Sanz and P. O’Reilly
Fatigue Failure in Reconstructed Acetabula – a Hip Simulator Study 1027
J. Tong, N. P. Zant and P. Heaton-Adegbile
Deformation and Fracture of Bioactive Particulate Composites Developed for Hard Tissue Repair .. 1029
M. Wang
Failure of Biomaterials in Implant Fixation ... 1031
P. J. Prendergast, J. R. Britton, P. T. Scannell and A. B. Lennon

19. Structural integrity Assessment in Theory and Practice 1033
Stress Analisys of High Pressure Steamlines in Thermal Power Plants 1033
A. Jakovljevic
Laminar Composite Materials Damage Monitoring by Embedded Optical Fibers ... 1035
A. Kojovi, I. Zivkovi, L. Brajovi, D. Mitrakovi and R. Aleksi
SOL GEL Synthesis and Structure of Hybrid Nanomaterials with Strong Chemical Bonds ... 1037
B. Samuneva, P. Djambaski, E. Kashchieva and G. Chernev
An Alternative Approach to Conventional Data Presentation of Fatigue 1039
D. Angelova
Absorbers of Seismic Energy for Damaged Masonary Structures 1041
D. Sumarac, Z. Petraskovi, S. Miladinovic, M. Trajkovi, M. Andjelkovic and N. Trisovic
Numerical Analysis of Tensile Specimen Fracture with Crack in HAZ 1043
G. Adziev, A. Sedmak and T. Adziev
Determination of JR-Curve by Two Points Method .. 1045
I. Blacic and V. Grabulov
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring of Stress-Strain State of Boiler During Pessure Test</td>
<td>1047</td>
</tr>
<tr>
<td>J. Kurai, Z. Burzic, N. Garic, M. Zrilic and B. Aleksic</td>
<td></td>
</tr>
<tr>
<td>Local Variation of Crack Driving Force in a Mismatched Weld</td>
<td>1049</td>
</tr>
<tr>
<td>J. Predan, N. Gubeljak and O. Kolednik</td>
<td></td>
</tr>
<tr>
<td>Strength Recovery of Machined Alumina by Self Crack Healing</td>
<td>1051</td>
</tr>
<tr>
<td>K. Ando, K. Takahashi, W. Nakao, T. Osada and S. Sato</td>
<td></td>
</tr>
<tr>
<td>Crack Initiation and Growth in HAZ of Microalloyed Steel</td>
<td>1053</td>
</tr>
<tr>
<td>K. Geric and S. Sedmak</td>
<td></td>
</tr>
<tr>
<td>Structural Integrity at Elevated Temperatures - Residual Service Life Evaluation</td>
<td>1055</td>
</tr>
<tr>
<td>L. Milovic and S. Sedmak</td>
<td></td>
</tr>
<tr>
<td>The Analysis of Supporting Structure of Planetary Gear Box Satellite</td>
<td>1057</td>
</tr>
<tr>
<td>M. Arsi, V. Aleksi and Z. Anelkovi</td>
<td></td>
</tr>
<tr>
<td>Failure Probability of Gear Teeth Wear</td>
<td>1059</td>
</tr>
<tr>
<td>M. Ognjanovic</td>
<td></td>
</tr>
<tr>
<td>Some Aspects of Engineering Approach to Structural Integrity Assessment</td>
<td>1061</td>
</tr>
<tr>
<td>M. Kiric and A. Sedmak</td>
<td></td>
</tr>
<tr>
<td>Structural Integrity Assessment Applying Ultrasonic Testing</td>
<td>1063</td>
</tr>
<tr>
<td>M. Kiric</td>
<td></td>
</tr>
<tr>
<td>(Crack-Healing + Proof-Test): Methodology to Guarantee the Reliability of Ceramics</td>
<td>1065</td>
</tr>
<tr>
<td>M. Ono, W. Nakao, K. Takahashi, K. Ando and M. Nakatani</td>
<td></td>
</tr>
<tr>
<td>Risk Based Integrity Assessment of Concrete Structures</td>
<td>1067</td>
</tr>
<tr>
<td>M. Pavisic</td>
<td></td>
</tr>
<tr>
<td>Structural Integrity Assessment by Local Approach to Fracture</td>
<td>1069</td>
</tr>
<tr>
<td>M. Zrilic, M. Rakin, Z. Cvijovic, A. Sedmak and S. Sedmak</td>
<td></td>
</tr>
<tr>
<td>Brittle and Ductile Fracture in Service of Pressure Vessels</td>
<td>1071</td>
</tr>
<tr>
<td>N. Filipovic and K. Geric</td>
<td></td>
</tr>
<tr>
<td>Mechanisms of Fracture in Medium Carbon Vanadium Microalloyed Steels</td>
<td>1073</td>
</tr>
<tr>
<td>N. Radovic, D. Drobnjak and H. Hraam</td>
<td></td>
</tr>
<tr>
<td>Computation and Experimental Investigations of Notched Components Fatigue Life Estimation</td>
<td>1075</td>
</tr>
<tr>
<td>S. Maksimovic, Z. Burzic and K. Maksimovic</td>
<td></td>
</tr>
<tr>
<td>Failure Analysis of Layered Composite Structures: Computation and Experimental Investigation</td>
<td>1077</td>
</tr>
<tr>
<td>S. Maksimovic</td>
<td></td>
</tr>
<tr>
<td>Loading Rate Effect on HSLA Steel Welded Joints Fracture Resistance</td>
<td>1079</td>
</tr>
<tr>
<td>V. Grabulov, I. Blai, A. Radovi and S. Sedmak</td>
<td></td>
</tr>
<tr>
<td>Case Study of Supporting Tubes Failure</td>
<td>1081</td>
</tr>
<tr>
<td>V. S. Zeravcic, M. Djukic, G. Bakic, B. Andjelic and B. Rajicic</td>
<td></td>
</tr>
<tr>
<td>Structure Integrity of Pressure Vesels Repair Welding Joints</td>
<td>1083</td>
</tr>
<tr>
<td>V. S. Zeravcic, G. Bakic, M. Djukic and B. Rajicic</td>
<td></td>
</tr>
<tr>
<td>Effect of Microalloyed Steel Welding Procedure on Fatigue Crack Growth</td>
<td>1085</td>
</tr>
<tr>
<td>Z. Burzic, V. Grabulov, M. Burzic, M. Manjgo, V. Gliha and T. Vuherer</td>
<td></td>
</tr>
<tr>
<td>Fracture Resistance of High-Strength 7000 Forging Alloys</td>
<td>1087</td>
</tr>
<tr>
<td>Z. Cvijovic, M. Rakin and M. Vratnica</td>
<td></td>
</tr>
</tbody>
</table>

20. Critical Distance Theories of Fracture 1089
Does a Characteristic Crack-Tip Distance Imply Discontinuous Crack Propagation? .. 1089
 A. P. Kfouri
A Multiaxial Criterion for Notch Fatigue Using a Critical-Distance Method 1091
 A. Carpinteri, A. Spagnoli, S. Vantatori and D. Viappiani
Size Effects for Crack Initiation at Blunt Notches or Cavities in Brittle Materials ... 1093
 D. Leguillon, E. Martin, D. Picard and C. Putot
The Theory of Critical Distances ... 1095
 D. Taylor
Strength Analysis of Composite Pinned Joints .. 1097
 H. A. Whitworth, O. Aluko and N. Tomlinson
Application of the Theory of Critical Distance to Fretting Fatigue 1099
 J. A. Araujo, L. Susmel, D. Taylor and L. H. M. Lopes
The Theory of Critical Distances: Applications in Fatigue 1101
 L. Susmel
Fatigue Assessment using an Integrated Threshold Curve Method - Applications ... 1103
 M. D. Chapetti
Analytical Approaches vs Atomistic Simulations in Fracture 1105
 N. Pugno, A. Carpinteri, M. Ippolito, A. Mattoni and L. Colombo
A Coupled Stress and Energy Criterion within Finite Fracture Mechanics 1107
 P. Cornetti, N. Pugno, A. Carpinteri and D. Taylor
Local Strain Energy Density and Fatigue Strength of Welded Joints 1109
 P. Lazzarin, P. Livieri and F. Berto
An Implicit Gradient Application to Fatigue of Notches and Weldments 1111
 R. Tovo and P. Livieri
Use of JVR to Predict Static Failures in Notched Components 1113
 P. Livieri
Standardization of Strength Evaluation Methods Using Critical Distance Stress 1115
 T. Hattori, N. Nishimura and M. Yamashita
Application of Point Stress Method to Hydro-Fracturing Tectonic Stress Measurement ... 1117
 T. Ito
A Unified Failure Criterion for Brittle or Quasi-Brittle Materials under Arbitrary Stress Concentration .. 1119
 J. Li and X. B. Zhang

22. New Investigations on Very High Cycle Fatigue of Materials 1121
Morphology of Step-Wise S-N Curves Depending on Notch and Surface Roughness in High Strength Steel ... 1121
 H. Itoga, K. Tokaji, M. Nakajima and H. N. Ko
Very High Cycle Fatigue Behaviour under Cyclic Torsion Loading 1123
 H. Mayer and S. Stanzl-Tschegg
Modelling of Fatigue Crack Growth From Exfoliation and Pitting Corrosion 1125
 G. Clark, P. K. Sharp and R. Jones
Does Copper Undergo Surface Roughening during Fatigue in the VH Regime? 1127
 S. Stanzl-Tschegg, H. Mughrabi and R. Schuller
Crack Initiation Mechanism of Bearing Steel in High Cycle Fatigue 1129
23. Deformation and Fracture of Engineering Materials

Fracture Toughness of Hydrided Zircaloy-4 Experimental and Numerical Study
C. Langlade, P. Bouffioux and M. Clavel

Crack Growth Behavior in a Highly Filled Elastomer
C. T. Liu, R. Neviere and G. Ravichandran

Crack Tip Behavior in TiAl when Approaching Grain Boundary
F.-P. Chiang, S. Chang and K. Wang

Effect of Loading Rate on the Energy Release Rate in a Constrained Elastomeric Disk

Analyses of Progressive Damage and Fracture of Particulate Composite Materials
Using S-FEM Technique
H. Okada, S. Tanaka, Y. Fukui and N. Kumazawa

Fracture Mechanics on PVDF Polymeric Material: Specimen Geometry Effects
L. Laiarinandrasana and G. Hochstetter

Fracture Toughness of Alloyed Austempered Ductile Iron (ADI)
O. Eric, D. Rajnovic, Z. Burzic, L. Sidjanin and M. T. Jovanovic

Prediction of Crack Growth under Random Load in Railway Wheel
R. Hamam, S. Pommier and F. Bumbieler

24. Materials Damage Prognosis and Life Cycle Engineering

Predicting the Evolution of Stress Corrosion Cracks From Pits
A. Turnbull, L. N. Mccartney and S. Zhou

Corrosion Problems in Nuclear Industry: Lessons Learned and Perspectives
J. M. Boursier, F. Foct, F. Vaillant and E. Walle

Aluminium Alloys Fatigue Evaluation Method
S. Rymkiewicz

25. Mixed-Mode Fracture

Singular Stress Fields Situations in Mode-II and Mixed-Mode Loaded Cracks
D. Fernández-Zúñiga, J. F. Kalthoff, A. Blázquez and A. Fernández-Canteli

Evaluation of M-Integral for Rubbery Material Problems Containing Multiple Cracks
J.-H. Chang and D.-J. Peng

Use of a Crack Box Technique for Crack Bifurcation in Ductile Material
D. Lebaillif, X. B. Zhang and N. Recho

Mixed Mode Fracture of Linear Elastic Materials with Cubic Symmetry
D. E. Lempidaki, N. P. O’Dowd and E. P. Busso

Three-Dimensional Experimental and Numerical SIFs and Crack Growth
D. M. Constantinescu, B. Bocaneala and L. Marsavina

An Arbitrarily Oriented Crack Near a Coated Fiber
H. M. Shodja and F. Ojaghnezhad

Simulation of the Mixed Mode Fracture of Concrete with Cohesive Models

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. C. Gálvez, D. A. Cendón, E. Reyes, J. M. Sancho and J. Planas</td>
<td>1169</td>
</tr>
<tr>
<td>Micromechanical Analysis of Rupture Mechanisms in Mixed Mode Ductile Fracture</td>
<td></td>
</tr>
<tr>
<td>I. Barsoum and J. Faleskog</td>
<td>1171</td>
</tr>
<tr>
<td>Mode I Preloading-Mode II Fracture in Warm Pre-Stressing</td>
<td></td>
</tr>
<tr>
<td>M. R. Ayatollahi and M. Mostafavi</td>
<td>1173</td>
</tr>
<tr>
<td>Predictions of Mixed Mode I/II Fracture toughness for Soft Rocks</td>
<td></td>
</tr>
<tr>
<td>M. R. Ayatollahi and M. R. M. Aliha</td>
<td>1175</td>
</tr>
<tr>
<td>An Interface Model for Mixed-mode, Buckling-Driven Decohesion of Superficial Layers</td>
<td></td>
</tr>
<tr>
<td>S. Bennati and P. S. Valvo</td>
<td>1177</td>
</tr>
<tr>
<td>MXED-Mode Fracture Analysis of Orthotropic Functionally Graded Materials</td>
<td></td>
</tr>
<tr>
<td>S. Dag, B. Yildirim, D. Sarikaya</td>
<td>1179</td>
</tr>
<tr>
<td>New Scheme for Fea of Mixed Mode Stable Crack Growth</td>
<td></td>
</tr>
<tr>
<td>S. K. Maiti, S. Namdeo and A. H. J. Mourad</td>
<td>1181</td>
</tr>
<tr>
<td>Numerical Simulation of Nonlinear Crack Propagation under Mixed-Mode Impact Loading</td>
<td></td>
</tr>
<tr>
<td>T. Fujimoto and T. Nishioka</td>
<td>1183</td>
</tr>
<tr>
<td>Elastic-Plastic Behaviour of Crack Propagation under Biaxial Cyclic Loading</td>
<td></td>
</tr>
<tr>
<td>T. Hoshide</td>
<td>1185</td>
</tr>
<tr>
<td>Numerical Analysis of Mixed-Mode Cracking in Concrete Dams</td>
<td></td>
</tr>
<tr>
<td>Z. Shi</td>
<td></td>
</tr>
<tr>
<td>26. Fracture Mechanics Characterization of Wood</td>
<td>1187</td>
</tr>
<tr>
<td>Species and Other Physical Effects on Parameters Describing a Wood Toughness Test</td>
<td></td>
</tr>
<tr>
<td>B. Thibaut and J. Beauchene</td>
<td>1189</td>
</tr>
<tr>
<td>Yew and Spruce Wood: Mechanical Properties and Fracture Surface Studies</td>
<td></td>
</tr>
<tr>
<td>D. Keunecke, C. Marki and P. Niemz</td>
<td>1191</td>
</tr>
<tr>
<td>Critical Crack Lengths in FRP Reinforced Glulam Beams</td>
<td></td>
</tr>
<tr>
<td>J. Desjarlais, W. G. Davids and E. N. Landis</td>
<td>1193</td>
</tr>
<tr>
<td>Failure Analysis of Engineering Wood Products</td>
<td></td>
</tr>
<tr>
<td>I. Smith, M. Snow and A. Asiz</td>
<td>1195</td>
</tr>
<tr>
<td>Modelization of Slow Crack Growth in Wood Considered as a Damage Viscoelastic Material</td>
<td></td>
</tr>
<tr>
<td>M. Chaplain and G. Valentin</td>
<td>1197</td>
</tr>
<tr>
<td>Mode I Crack Propagation in Softwood, Microanalyses and Modeling</td>
<td></td>
</tr>
<tr>
<td>P. Navi and M. Sedighi-Gilani</td>
<td>1199</td>
</tr>
<tr>
<td>Fracture Properties of Pine and Spruce in Mode I</td>
<td></td>
</tr>
<tr>
<td>N. Dourado, S. Morel, M. F. S. F. De Moura, G. Valentin and J. Morais</td>
<td></td>
</tr>
<tr>
<td>Influence of the Specimen Geometry on R-Curve: Numerical Investigations</td>
<td>1201</td>
</tr>
<tr>
<td>C. Lespine, S. Morel, J.-L. Courreau and G. Valentin</td>
<td></td>
</tr>
<tr>
<td>Fracture Behaviour and Cutting of Small Wood Specimens in RT-Direction</td>
<td>1203</td>
</tr>
<tr>
<td>S. Koponen and P. Tukiainen</td>
<td></td>
</tr>
<tr>
<td>Fracturing of Wood under Torsional Loading: Fracture Mechanisms and Mechanics</td>
<td>1205</td>
</tr>
<tr>
<td>E. K. Tschegg and S. E. Stanzl-Tschegg</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>On the Influence of Humidity Cycling on Fracture Properties of Wood</td>
<td>1207</td>
</tr>
<tr>
<td>S. Vasic and S. Tschegg</td>
<td></td>
</tr>
<tr>
<td>Determination of Cohesive Fracture Parameters for Wood</td>
<td>1209</td>
</tr>
<tr>
<td>T. Astrup, J. F. Olesen, L. Damkilde and P. Hoffmeyer</td>
<td></td>
</tr>
<tr>
<td>The Role of Fracture Toughness in the Cutting of Wood</td>
<td>1211</td>
</tr>
<tr>
<td>T. Atkins</td>
<td></td>
</tr>
<tr>
<td>28. Short Fatigue Crack Growth under Multi-Axial Loading Conditions</td>
<td>1213</td>
</tr>
<tr>
<td>Short Fatigue Cracks of In-Service Fatigued Turbine Blades</td>
<td>1213</td>
</tr>
<tr>
<td>A. A. Shanyavskiy, M. A. Artamonov, A. L. Tushentsov</td>
<td></td>
</tr>
<tr>
<td>Short Crack Growth under Cyclic Torsion with Static Tension</td>
<td>1215</td>
</tr>
<tr>
<td>I. Ohkawa, S. Hirano, T. Negishi and M. Misumi</td>
<td></td>
</tr>
<tr>
<td>Resistance-Curve Method for Predicting Fatigue Thresholds under Combined Loading</td>
<td>1217</td>
</tr>
<tr>
<td>K. Tanaka, Y. Akiniwa and M. Wakita</td>
<td></td>
</tr>
<tr>
<td>The Growth of Short Cracks From Defects under Multi-Axial Loading</td>
<td>1219</td>
</tr>
<tr>
<td>M. Endo and A. J. McEvily</td>
<td></td>
</tr>
<tr>
<td>Short Fatigue Cracks in Notched and Unnotched Specimens under Non-Proportional Loading</td>
<td>1221</td>
</tr>
<tr>
<td>O. Hertel, T. Seeger, M. Vormwald, R. Doring and J. Hoffmeyer</td>
<td></td>
</tr>
<tr>
<td>Microcracks Growth in Push-Pull and Reversed Torsion in Stainless Steel</td>
<td>1223</td>
</tr>
<tr>
<td>V. Doquet and G. Bertolino</td>
<td></td>
</tr>
<tr>
<td>Hydrogen and Notch Effects on Torsional Fatigue of Stainless Steel</td>
<td>1225</td>
</tr>
<tr>
<td>Y. Kondo, M. Kubota and K. Ohguma</td>
<td></td>
</tr>
<tr>
<td>30. Integrity of Gears</td>
<td>1227</td>
</tr>
<tr>
<td>Influence of Moving Tooth Load on Gear Fatigue Behaviour</td>
<td>1227</td>
</tr>
<tr>
<td>D. T. Jelaska and S. Podrug</td>
<td></td>
</tr>
<tr>
<td>Comparison of Solid Spur Gear Face Load Factors</td>
<td>1229</td>
</tr>
<tr>
<td>G. Marunic</td>
<td></td>
</tr>
<tr>
<td>Prediction of Contact Fatigue Internal Crack Propagation in Hypoid Gears</td>
<td>1231</td>
</tr>
<tr>
<td>M. Vimercati, M. Guagliano, L. Vergani and A. Piazza</td>
<td></td>
</tr>
<tr>
<td>Fatigue Crack Initiation Along Inclusion Interfaces of Contacting Mechanical Elements</td>
<td>1233</td>
</tr>
<tr>
<td>S. Glodez, M. Ulbin and J. Flasker</td>
<td></td>
</tr>
<tr>
<td>Energy Based Gear Fault Diagnostics</td>
<td>1235</td>
</tr>
<tr>
<td>S. J. Loutridis</td>
<td></td>
</tr>
<tr>
<td>Crack Propagation in Gear Tooth Root</td>
<td>1237</td>
</tr>
<tr>
<td>S. Pehan, B. Zafosnik and J. Kramberger</td>
<td></td>
</tr>
<tr>
<td>Experimental Evaluation of Stress Intensity Factors in Spur Gear Teeth</td>
<td>1239</td>
</tr>
<tr>
<td>V. Spitas, G. Papadopoulos, Th. Costopoulos and C. Spitas</td>
<td></td>
</tr>
<tr>
<td>35. High Temperature and Thermomechanical Fatigue</td>
<td>1241</td>
</tr>
<tr>
<td>Isothermal and Thermomechanical Fatigue Behavior of the ODS Superalloy PM1000</td>
<td>1241</td>
</tr>
<tr>
<td>W. O. Ngala, G. Biallas and H. J. Maier</td>
<td></td>
</tr>
</tbody>
</table>
Fatigue-Creep-Environment Interactions in a Directionally-Solidified Ni-Base Superalloy ... 1243
A. P. Gordon, M. M. Shenoy, R. W. Neu and D. L. McDowell

The Effects of Microstructure, Deformation Mode and Environment on Fatigue 1245
S. D. Antolovich and B. F. Antolovich

Comparing Fatigue Behaviour of Ti6242 and Novel TIAL Intermetallics 1247
T. K. Heckel, A. Guerrero-Tovar and H. J. Christ

A TBC Failure Model Based on Crack Number Density 1249
X. Wu, Z. Zhang and R. Liu

36. Impact Failure of Laminated and Sandwich Composite Structures.......... 1251
Impact Induced Composite Delamination: State and Parameter Identification via
Unscented Kalman Filter ... 1251
A. Corigliano, A. Ghisi and S. Mariani

Modelling Impact Damage in Sandwich Concept Structures 1253
A. Johnson and N. Pentecote

Punch Shear Behavior of Composites at Low and High Rates.......................... 1255
B. A. Gama and J. W. Gillespie Jr.

Repeated Impact Behaviour and Damage Progression of Glass Reinforced Plastics 1257
G. Belingardi, M. P. Cavatorta and D. S. Paolino

Impact Behaviour Modelling of a Composite Leading Edge Structure 1259
G. Labeas and Th. Kermanidis

Bending Strength of Sandwich Panels with Different Cores After Impact 1261
W. Goettner and H. G. Reimerdes

Energy Absorbing Ability of Sandwich Composite Structures 1263
J. P. Dear, W. Maruszewska, S. T. Oh and H. Lee

Impact Behaviour of Metal Foam Cored Sandwich Beams 1265
S. Mckown and R. A. W. Mines

37. Mesofracture and Transferability ... 1267
Stress Gradient at Notch Roots Using Volumetric Method 1267
H. Adib and G. Pluvinage

Local Approach Use at Solution of Fracture Parameters Transferability 1269
L. Jurasek, M. Holzmann and I. Dlouhy

Damage in Rubber-Modified Polymers: Experimental, Modelling and
Computational Aspects ... 1271
N. Belayachi, F. Zaïri, N. Benseddiq and M. Naït Abdelaziz

Failure Assessment Diagrams Based on the Criterion of Average Stress 1273
Y. G. Matvienko

38. Damage in Composites - Damage Development in Composite Materials
& Structures - Models of Prediction ... 1275
Material Models for Damaged Composite Laminates ... 1275
J. Varna

Raman Spectroscopy Assessment of Stiffness Reduction and Residual Strains
due to Matrix Cracking in Angle – PLY Laminates ... 1277
P. Lundmark, D. G. Katerelos, J. Varna and C. Galiotis
Physical Modelling of Failure Processes in Composite Materials 1279
 P. W. R. Beaumont
NCF Cross-PLY Laminates: Damage Accumulation and Degradation of Elastic
 Properties ... 1281
 R. Joffe and D. Mattsson
Matrix Crack Initiation and Propagation in Laminates with Off-Axis PLIES 1283
 N. Vrellos, S. L. Ogin and P. A. Smith
Stress Oscillation and Instability of Yielding in Polymers and Nanocomposites 1285
 D. E. Mouzakis, G. Kandilioti, S. Tzavalas and V. Gregoriou
Prediction of Cyclic Durability of Woven Composite Laminates 1287
 V. Tamuzs and K. Reifsnider

39. Aging Aerostructures ... 1289
Repair of Corroded Aerospace Aluminium Panels Using Ultrasonic Impact
 Treatment ... 1289
 C. A. Rodopoulos, S. Pantelakis, M. Liao and E. Statnikov
Fatigue Crack Initiation in Stress Concentration Areas 1291
 C. Schwob, F. Ronde-Oustau and L. Chambon
Hydrogen Trapping: Deformation and Heat Treatment Effects in 2024 Alloy 1293
 H. Kamoutsi, G. N. Haidemenopoulos, V. Bontozoglou, P. V. Petroyiannis and
 Sp. G. Pantelakis
An Integrated Methodology Assessing the Aging Behaviour of Aircraft Structures 1295
 G. Labeas and I. Diamantakos
Numerical Investigation on the Tensile Behaviour of Pre-Corroded 2024
 Aluminium Alloy ... 1297
 P. V. Petroyiannis, G. Labeas, Sp. G. Pantelakis, E. Kamoutsi,
 V. Bontozoglou and G. N. Haidemenopoulos

40. Residual Stress and its Effects on Fatigue and Fracture 1299
Assessment of Defects under Combined Primary and Residual Stresses 1299
 A. H. Sherry and M. R. Goldthorpe
Effect of Residual Stresses on the Crack Growth in Aluminum 1301
 B. Kumar and J. E. Locke
Effect of the Cryogenic Wire Brushing on the Surface Integrity and the Fatigue
Life Improvement of the AISI 304 Stainless Steel Ground Components 1303
 N. B. Fredja, H. Sidhoma and C. Brahamb
Interaction of Residual Stress with Mechanical Loading in Ferritic Steels 1305
 A. Mirzaee-Sisan, C. E. Truman and D. J. Smith
Evaluation of Novel Post Weld Heat Treatment in Ferritic Steel Repair Welds
 Based on Neutron Diffraction .. 1307
 C. Ohms, D. Neov, R. C. Wimpory and A. G. Youtsos
Surface Crack Development in Transformation Induced Fatigue of SMA Actuators 1309
 D. C. Lagoudas, O. W. Bertacchini and E. Patoor
Finite Element Simulation of Welding in Pipes: a Sensitivity Analysis 1311
 D. Elias Katsareas, C. Ohms and A. G. Youtsos
Residual Stress Prediction in Letterbox-Type Repair Welds 1313
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of Reflection Shot Peening and Fine Grain Size on Improvement of Fatigue Strength for Metal Bellows</td>
<td>1315</td>
</tr>
<tr>
<td>H. Okada, A. Tange and K. Ando</td>
<td></td>
</tr>
<tr>
<td>Viscosity Effect on Displacements and Stresses of a Two-Pass Welding Plate</td>
<td>1317</td>
</tr>
<tr>
<td>W. El Ahmar and J. F. Jullien</td>
<td></td>
</tr>
<tr>
<td>Surface Integrity in High Speed Machining of Ti-6Wt.%Al-4Wt.%V Alloy</td>
<td>1319</td>
</tr>
<tr>
<td>J. D. P. Velasquez, B. Bolle, P. Chevrier and A. Tidu</td>
<td></td>
</tr>
<tr>
<td>Phase Transformation and Damage Elastoplastic Multiphase Model for Welding Simulation</td>
<td>1321</td>
</tr>
<tr>
<td>T. Wu, M. Coret and A. Combescure</td>
<td></td>
</tr>
<tr>
<td>The Present Sans Instrument and the New HFR-Petten Sans Facility Based on a Cold Neutron Source</td>
<td>1323</td>
</tr>
<tr>
<td>O. Ucaa, B. C. Ohmsa, D. Neova and A. G. Youtsosa</td>
<td></td>
</tr>
<tr>
<td>Residual Stress Numerical Simulation of Two Dissimilar Material Weld Junctions</td>
<td>1325</td>
</tr>
<tr>
<td>P. Gilles, L. Nouet and P. Duranton</td>
<td></td>
</tr>
<tr>
<td>Identification of Weld Residual Stress Length Scales for Fracture Assessment</td>
<td>1327</td>
</tr>
<tr>
<td>P. J. Bouchard and P. J. Withers</td>
<td></td>
</tr>
<tr>
<td>High-Resolution Neutron Diffraction for Phase and Residual Stress Investigations</td>
<td>1329</td>
</tr>
<tr>
<td>P. Mikula and M. Vrana</td>
<td></td>
</tr>
<tr>
<td>Sensitivity of Predicted Residual Stresses to Modelling Assumptions</td>
<td>1331</td>
</tr>
<tr>
<td>S. K. Bate, R. Charles, D. Everett, D. O’Garal, A. Warren and S. Yellowlees</td>
<td></td>
</tr>
<tr>
<td>Welding Effects on Thin Stiffened Panels</td>
<td>1333</td>
</tr>
<tr>
<td>T. T. Chau</td>
<td></td>
</tr>
<tr>
<td>Evaluation of Residual Stresses in Ceramic Polymer Matrix Composites Using Finite Element Method</td>
<td>1335</td>
</tr>
<tr>
<td>K. Babiski, T. Boguszewski, A. Boczkowska, M. Lewandowska, W. Swieszkowski and K. J. Kurzydlowski</td>
<td></td>
</tr>
<tr>
<td>41. Computational Modeling of Multiphysics Degrading Systems (CMMDS)</td>
<td>1337</td>
</tr>
<tr>
<td>Towards Data-Driven Modeling and Simulation of Multiphysics Degrading Systems</td>
<td></td>
</tr>
<tr>
<td>J. G. Michopoulos and C. Farhat</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling of Piezoceramic Transducer Performance in the Presence of Material Defects</td>
<td>1339</td>
</tr>
<tr>
<td>T. A. Christensen, N. L. Andersen, and M. Willatzen</td>
<td></td>
</tr>
<tr>
<td>A Continuum Approach for Identifying Elastic Moduli of Composites</td>
<td>1341</td>
</tr>
<tr>
<td>J. G. Michopoulos and T. Furukawa</td>
<td></td>
</tr>
<tr>
<td>Regularized Identification of Material Constants Using Multi-Objective Gradient-Based Method</td>
<td>1343</td>
</tr>
<tr>
<td>T. Furukawa and J. G. Michopoulos</td>
<td></td>
</tr>
<tr>
<td>Loading and Material Features Influence on Piezoelectric Material Performance</td>
<td>1345</td>
</tr>
<tr>
<td>V. G. Degiorgi and S. A. Wimmer</td>
<td></td>
</tr>
<tr>
<td>Modeling of Plasma Chemical Deposition and Degradation of Silicon Thin Films</td>
<td>1347</td>
</tr>
<tr>
<td>V. V. Krzhizhanovskaya, P. M. A. Sloot and Y. E. Gorbachev</td>
<td></td>
</tr>
<tr>
<td>42. Scaling and Size Effects</td>
<td>1349</td>
</tr>
</tbody>
</table>
A Fractal Approach Interpretation for the Indentation Size Effect.. 1349
A. Carpinteri and S. Puzzi

Description of Multi-Scaling Power Laws in Fracture and Strength................................. 1351
A. M. Korsunsky

The Spalling Failure Around Deep Excavations in Rock Masses 1353
A. P. Fantilli and P. Vallini

Scaling in Multiaxial Compressive Fracture... 1355
A. S. Elkadi and J. G. M. van Mier

Fracture of Antarctic FY Sea Ice .. 1357
J. P. Dempsey, S. Wang and D. M. Cole

Mixed Mode Fracture of Brickwork Masonry.. 1359

Geometric Scaling and Instability in FRP-Concrete Debonding... 1361
K. V. Subramaniam, M. Ali-Ahmad and C. Carloni

A Simplified MCFT for Shear Capacity Scaling of R/C Beams .. 1363
M. T. Kazemi and V. Broujerdian

Interplay of Sources of Size Effects in Concrete Specimens ... 1365
M. Vorechovsky and D. Matesova

Scale Effect in Elastic and Strength Properties of Nanostructures.................................... 1367
O. S. Loboda, A. M. Krivtsov and N. F. Morozov

Fracture Toughness Assessment of a C-MN Steel Using Miniature Specimens 1369
P. J. Apps, W. Geary, J. W. Hobbs and G. Wardle

Size Effect in the Bonding of Smooth and Deformed Bars: NSC versus HPC 1371
P. Bamonte, D. Coronelli and P. G. Gambarova

Size Effect in the Cracking of Drying Soil ... 1373
P. C. Prat, A. Ledesma, and M. R. Lakshmikantha

Modelling of the Volume Effects Related to the Uniaxial Behaviour of Concrete. From a Discontinuous to a Macroscopic Approach... 1375
P. Rossi, J. L. Tailhan, J. Lombart and A. Deleurence

Size Effect and R-Curve in Quasibrittle Fracture.. 1377
S. Morel, E. Bouchaud and G. Valentin

Bifurcation and Size Effect in a Viscoelastic Non-Local Damageable Continuum... 1379
Th. Baxevanis, G. Pijaudier-Cabot and F. Dufour

Ultiscale Necessary and Sufficient Strength Criteria... 1381
V. M. Kornev

Size Effects: Moving forwards... 1383
X. Hu and K. Duan

An Experimental Study on Rapid Setting Concrete Repair Materials 1385
J. P. Richards and Y. Xi

44. Multiple Cracking and Delamination ... 1387
Hierarchical Failure Modeling and Related Scale-Invariant Probability Distributions of Strength.. 1387
D. A. Onishchenko

Interaction of Two Adhesively Bonded Weak Zones ... 1389
I. V. Simonov and B. L. Karihaloo
Multiple Cracking in Surface-Hardened Tensile Specimens and their Fracture Mechanisms ... 1391
 L. S. Derevyagina, V. E. Panin, R. V. Goldstein, N. A. Antipina
 and I. L. Strelkova
Fracture Criterion of Cracks Initiation and Growth .. 1393
 M. Perelmuter
Interfacial Cracks Emanating from Partially Debonded Subsurface Circular Elastic Inclusions ... 1395
 P. B. N. Prasad
Mechanics of Block Structures and its Applications to Geodynamics 1397
 P. V. Makarov
Static and Dynamic Response of Multiple Delaminations 1399
 M. G. Andrews and R. Massabo
Modeling Crack Growth in Structure- Nonhomogeneous Medium under Complex Stress State ... 1401
 R. V. Goldstein, Y. V. Zhitnikov and N. M. Osipenko
Nonideal Interface of a Bimaterial with Defects under Thermal Load 1403
 V. E. Petrova and K. P. Herrmann
Multiple Cracking Development at the Prefracture Stage of Ion Crystals 1405
 Y. Y. Deryugin, V. E. Panin, V. Hadjicontis, K. Mavromatou

Author Index .. 1407
Editor’s Preface

This volume contains two-page abstracts of the 698 papers presented at the “16th European Conference of Fracture,” (ECF16) held in Alexandroupolis, Greece, July 3-7, 2006. The accompanying CD attached at the back cover of the book contains the full length papers.

The abstracts of the fifteen plenary lectures are included in the beginning of the book. The remaining 683 abstracts are arranged in 25 tracks and 35 special symposia/sessions with 303 and 380 abstracts, respectively. The papers of the tracks have been contributed from open call, while the papers of the symposia/sessions have been solicited by the respective organizers. Both tracks and symposia/sessions fall into two categories, namely, fracture of nanomaterials and structures and engineering materials and structures with 88 and 595 papers, respectively.

Started in 1976, the European Conference of Fracture (ECF) takes place every two years in a European country. Its scope is to promote world-wide cooperation among scientists and engineers concerned with fracture and fatigue of solids. ECF16 was under the auspices of the European Structural Integrity Society (ESIS) and was sponsored by the American Society of Testing and Materials, the British Society for Stain Measurement, the Society of Experimental Mechanics, the Italian Society for Experimental Mechanics, and the Japanese Society of Mechanical Engineers. ECF16 focused in all aspects of structural integrity with the objective of improving the safety and performance of engineering structures, components, systems and their associated materials. Emphasis was given to the failure of nanostructured materials and nanostructures and micro and nanoelectromechanical systems (MEMS and NEMS). The technical program of ECF16 was the product of hard work and devotion of more than 150 world leading experts to whom I am greatly indebted. The success of ECF16 relied solely on the dedication and titanic work of the members of the Scientific Advisory Board, the pillars of ECF16. As chairman of ECF16 I am honored to have them on the Board and have worked closely with them for a successful conference.

Fracture mechanics analysis has been successful for many years in the prevention of failures of engineering materials and structures. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. New technological developments, however, raise new challenges for fracture mechanics research and development. Quasi-brittle materials including concrete, cement pastes, rock, soil, etc. are being extensively used in engineering applications. Layered materials and especially thin film/substrate systems are becoming important in small volume systems used in micro and nanoelectromechanical systems (MEMS and NEMS). Nanostructured materials are being introduced in our every day life. In all these problems fracture mechanics plays a major role for the prediction of failure and safe design of materials and structures. Failure of materials and structures at the micro and nano scale levels are adequately addressed at ECF16 with 93 papers referred to in this area.
More than nine hundred participants attended ECF16, while more than eight hundred fifty papers were presented, far more than any other ECF over a thirty year period. The participants of ECF16 came from 49 countries. Roughly speaking 66% came from Europe, 17% from the Americas, 8% from the Far East and 9% from other countries. I am happy and proud to have welcomed in Alexandroupolis well-known experts who came to discuss problems related to the analysis and prevention of failure in structures. The tranquility and peacefulness of this small town provided an ideal environment for a group of scientists and engineers to gather and interact on a personal basis. Presentation of technical papers alone is not enough for effective scientific communication. It is the healthy exchange of ideas and scientific knowledge, formal and informal discussions, together with the plenary and contributed papers that make a fruitful and successful meeting. Informal discussions, personal acquaintance and friendship play an important role.

I am proud to have hosted ECF16 in the beautiful town of Alexandroupolis, site of the Democritus University of Thrace and I am pleased to have welcomed colleagues, friends, and old and new acquaintances.

I very sincerely thank the authors who have contributed to this volume, the symposia/sessions organizers for their hard work and dedication and the referees who reviewed the quality of the submitted contributions. Our sponsors’ support, give in various forms, is gratefully acknowledged. The tireless effort of the members of the Organizing Committee as well as of other numerous individuals, and people behind the scenes is appreciated. I am deeply indebted to the senior students of the Department of Electrical and Computer Engineering of the Democritus University of Thrace Messrs. N. Tsiantoulas and S. Siallis for their hard work and dedication in the preparation of the ECF16 website in a timely and efficient manner and the organization of the conference, and for their efforts in helping me compile this volume. Finally, a special word of thanks goes to Mrs. Nathalie Jacobs of Springer for the nice appearance of this book and her kind and continuous collaboration and support.

January 2006

Emmanuel E. Gdoutos

Xanthi, Greece

Editor
ORGANIZING COMMITTEES

Scientific Advisory Board

Emmanuel E. Gdoutos (Chairman)

Track 1 (Nanomaterials and Nanostructures)
Awaji, H. (Japan), Bahr, D., (USA), Ballarini, R., (USA), Batra, R. (USA), Belytschko, T. (USA), Berndt, C. (USA), Bhusan, B. (USA), Espinosa, H. (USA), Friedrich, K. (Germany), Karimi, A. (Switzerland), Kouris, D. (USA), Lagoudas, D. (USA), Meletis, E.I. (USA), Michel, B. (Germany), Moody, N. (USA), Plumbridge, W.J. (UK), Pluvinage, G. (France), Ruoff, R. (USA), Sih, G.C. (China), Zhang, Z. (Germany), Zhou, M. (USA).

Track 2 (Engineering Materials and Structures)

LOCAL ORGANIZING COMMITTEE

Emmanuel E. Gdoutos (Chairman)

Z. Adamidou, P. Kalaitzidis, M.S. Konsta-Gdoutos, G. Papakaliatakis, S. Sailis, N. Tsiantoulas, D.A. Zacharopoulos
ECF16 TRACKS

B: TRACKS

B1: Nanomaterials and Nanostructures
1T1. Fracture and Fatigue of Nanostuctured Materials
1T2. Failure Mechanisms
1T4. Fatigue and Fracture of MEMS and NEMS
1T7. Thin Films
1T9. Failure of Nanocomposites

B2: Engineering Materials and Structures
2T1. Physical Aspects of Fracture
2T2. Brittle Fracture
2T3. Ductile Fracture
2T4. Nonlinear Fracture Mechanics
2T5. Fatigue and Fracture
2T8. Polymers, Ceramics and Composites
2T11. Fracture Mechanics Analysis
2T13. Probabilistic Approaches to Fracture Mechanics
2T14. Computational Fracture Mechanics
2T15. Experimental Fracture Mechanics
2T16. Creep Fracture
2T17. Environment Assisted Fracture
2T18. Dynamic, High Strain Rate, or Impact Fracture
2T19. Damage Mechanics
2T21. Concrete and Rock
2T22. Sandwich Structures
2T23. Novel Testing and Evaluation Techniques
2T26. Structural Integrity
2T28. Mesofracture Mechanics
2T32. Micromechanisms in Fracture and Fatigue
C: SPECIAL SYMPOSIA/SESSIONS

C1: Nanomaterials and Nanostructures
1. Fracture and Fatigue at the Micro and Nano Scales (Organized by H.D. Espinosa and I.M. Daniel)
3. Nanoscale Deformation and Failure (Organized by M. Zhou)
29. Reliability and Failure Analysis of Electronics and Mechanical Systems (O.S. Lee)
31. Multiscaling in Molecular and Continuum Mechanics – Scaling in Time and Size from Macro to Nano (Organized by G.C. Sih)
34. Cracks in Micro- and Nanoelectronics (Organized by B. Michel)
43. Interfacial Fracture in Composites and Electronic Packaging Materials (Organized by C.T. Sun and T. Ikeda)

C2: Engineering Materials and Structures
4. Fracture and Fatigue of Elastomers (Organized by C. Bathias and E. Bayraktar)
5. Integrity of Dynamical Systems (Organized by K. Hedrih)
8. Modelling of Material Property Data and Fracture Mechanisms (Organized by R. Moskovic)
9. Micromechanisms in Fracture and Fatigue (Organized by J. Pukluda and R. Pippan)
12. Interface Fracture and Behavior of Joints (Organized by L. Banks-Sills)
13. Computational Fracture Mechanics (Organized by T. Belytschko and A. Gravouil)
14. Cohesive Models of Fracture (Organized by W. Brocks)
17. SIM, Philosophy, Instrumentation and Analysis (Organized by W. D. Dover)
18. Fracture of Biomaterials (Organized by J. tong)
19. Structural Integrity Assessment in Theory and Practice (Organized by S. Vodenitsarov and S. Sedmak)
20. Critical Distance Theories of Fracture (Organized by D. Taylor)
22. New Investigations on Very High Cycle Fatigue of Materials (Organized by H. Mayer and S. Stanzl-Tschegg)
25. Mixed-Mode Fracture (Organized by M. Gosz)
26. Fracture Mechanics Characterization of Wood (Organized by S. Stanzl-Tschegg)
28. Short Fatigue Crack Growth under Multi-axial Loading Conditions (Organized by Y. Murakami and A.J. McEvily)
30. Integrity of Gears (Organized by D. Jelaska)
33. Fracture and Failure of Natural Building Stones Applications in the Restoration of Ancient Monuments (Organized by S. Kourkoulis)
35. High Temperature and Thermomechanical Fatigue (Organized by R.W. Neu, S. Kalluri and H.J. Maier)
36. Impact Failure of Laminated and Sandwich Composite Structures (Organized by R. Mines)
37. Mesofracture and Transferability (Organized by G. Pluvinage)
38. Damage in Composites - Damage Development in Composite Materials & Structures - Models of Prediction (Organized by C. Galiotis)
39. Aging Aerostructures (Organized by S. Pantelakis)
40. Residual Stress and its Effects on Fatigue and Fracture (Organized by A.G. Youtsos and P.J. Withers)
41. Computational Modeling of Multiphysics Degrading Systems (CMMDS), (Organized by J. Michopoulos)
42. Scaling and Size Effects (Organized by Z.P. Bazant and M. Jirasek)
44. Multiple Cracking and Delamination (Organized by R. Goldstein and R. Massabo)