Carbon Nanotubes
NATO Science Series

A Series presenting the results of scientific meetings supported under the NATO Science Programme.

The Series is published by IOS Press, Amsterdam, and Springer in conjunction with the NATO Public Diplomacy Division

Sub-Series

I. Life and Behavioural Sciences
II. Mathematics, Physics and Chemistry
III. Computer and Systems Science
IV. Earth and Environmental Sciences

IOS Press
Springer
IOS Press
Springer

The NATO Science Series continues the series of books published formerly as the NATO ASI Series.

The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are “Advanced Study Institutes” and “Advanced Research Workshops”, and the NATO Science Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO’s Partner countries – countries of the CIS and Central and Eastern Europe.

Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field.

Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action.

As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series was re-organized to the four sub-series noted above. Please consult the following web sites for information on previous volumes published in the Series.

http://www.nato.int/science
http://www.springer.com
http://www.iospress.nl

Series II: Mathematics, Physics and Chemistry – Vol. 222
Carbon Nanotubes: From Basic Research to Nanotechnology

edited by

Valentin N. Popov
Faculty of Physics,
University of Sofia,
Bulgaria

and

Philippe Lambin
Département de Physique,
Facultés Universitaires Notre-Dame de la Paix,
Namur, Belgium
TABLE OF CONTENTS

Preface... xi

Scientific Committee... xiii

Part I. Synthesis and structural characterization

Arc discharge and laser ablation synthesis of single-walled carbon nanotubes
B. Hornbostel, M. Haluska, J. Cech, U. Dettlaff and S. Roth1

Scanning tunneling microscopy and spectroscopy of carbon nanotubes
L. P. Biró and Ph. Lambin ..19

Structural determination of individual singlewall carbon nanotube
by nanoarea electron diffraction

The structural effects on multi-walled carbon nanotubes
by thermal annealing under vacuum
K. D. Behler, H. Ye, S. Dimovski and Y. Gogotsi ...45

TEM sample preparation for studying the interface CNTs-catalyst-substrate
M.-F. Fiawoo, A. Loiseau, A.-M. Bonnot, A. Iaia, V. Bouchiat and J. Thibault ...47

A method to synthesize and tailor carbon nanotubes
by electron irradiation in the TEM
R. Caudillo, M. José-Yacaman, H. E. Troiani, M. A. L. Marques and A. Rubio ...49

Scanning tunneling microscopy studies of nanotube-like structures
on the HOPG surface
I. N. Kholmanov, M. Fanetti, L. Gavioli, M. Casella and M. Sancrotti51

Influence of catalyst and carbon source on the synthesis
of carbon nanotubes in a semi-continuous injection
chemical vapor deposition method

PECVD growth of carbon nanotubes
A. Malesevic, A. Vanhulsel and C. Van Haesendonck ..55
Carbon nanotubes growth and anchorage to carbon fibres
Th. Dikonimos Makris, R. Giorgi, N. Lisi, E. Salernitano,
M. F. De Riccardis and D. Carbon ..57

CVD synthesis of carbon nanotubes on different substrates
Th. Dikonimos Makris, L. Giorgi, R. Giorgi, N. Lisi, E. Salernitano,
M. Alvisi and A. Rizzo ...59

Influence of the substrate types and treatments on carbon nanotube
growth by chemical vapor deposition with nickel catalyst
R. Rizzoli, R. Angelucci, S. Guerri, F. Corticelli, M. Cuffiani
and G. Veronese ..61

Non catalytic CVD growth of 2D-aligned carbon nanotubes
N. I. Maksimova, J. Engstler and J. J. Schneider63

Pyrolytic synthesis of carbon nanotubes on Ni, Co, Fe/MCM-41 catalysts
K. Katok, S. Brichka, V. Tertykh and G. Prikhod’ko65

A Grand Canonical Monte Carlo simulation study of carbon structural
and adsorption properties of in-zeolite templated carbon nanostructures
Th. J. Roussel, C. Bichara and R. J. M. Pellens67

Part II. Vibrational properties and optical spectroscopies

Vibrational and related properties of carbon nanotubes
V. N. Popov and Ph. Lambin ..69

Raman scattering of carbon nanotubes
H. Kuzmany, M. Hulman, R. Pfeiffer and F. Simon89

Raman spectroscopy of isolated single-walled carbon nanotubes
Th. Michel, M. Paillet, Ph. Poncharal, A. Zahab, J.-L. Sauvajol,
J. C. Meyer and S. Roth ...121

Part III. Electronic and optical properties and electrical transport

Electronic transport in nanotubes and through junctions of nanotubes
Ph. Lambin, F. Triozon and V. Meunier ..123

Electronic transport in carbon nanotubes at the mesoscopic scale
S. Latil, F. Triozon and S. Roche ..143

Wave packet dynamical investigation of STM imaging mechanism
using an atomic pseudopotential model of a carbon nanotube
Géza I. Márk, Levente Tapasztó, László P. Biró and A. Mayer167

Carbon nanotube films for optical absorption
E. Kovats, A. Pekker, S. Pekker, F. Borondics and K. Kamaras169
Intersubband exciton relaxation dynamics in single-walled carbon nanotubes
C. Gadermaier, C. Manzoni, A. Gambetta, G. Cerullo, G. Lanzani, E. Menna and M. Meneghetti ...171

Peculiarities of the optical polarizability of single-walled zigzag carbon nanotube with capped and tapered ends
O. V. Ogloblya and G. M. Kuznetsova ..173

Third-order nonlinearity and plasmon properties in carbon nanotubes
A. M. Nemilentsau, A. A. Khrutchinskii, G. Ya. Slepyan and S. A. Maksimenko ...175

Hydrodynamic modeling of fast ion interactions with carbon nanotubes
D. J. Mowbray, S. Chung and Z. L. Mišković ...177

Local resistance of single-walled carbon nanotubes as measured by scanning probe techniques
B. Goldsmith and Ph. G. Collins ...179

Band structure of carbon nanotubes embedded in a crystal matrix
P. N. D'yachkov and D. V. Makaev ..181

Magnetotransport in 2-D arrays of single-wall carbon nanotubes
V. K. Ksenevich, J. Galibert, L. Forro and V. A. Samuilov183

Computer modeling of the differential conductance of symmetry connected armchair-zigzag heterojunctions
O. V. Ogloblya and G. M. Kuznetsova ..185

Part IV. Molecule adsorption, functionalization and chemical properties

Molecular Dynamics simulation of gas adsorption and absorption in nanotubes
A. Proykova ..187

First-principles and molecular dynamics simulations of methane adsorption on graphene
E. Daykova, S. Pisov and A. Proykova ..209

Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotubes

Carbon nanotubes with vacancies under external mechanical stress and electric field
H. Iliev, A. Proykova and F.-Y. Li ..213
Part V. Mechanical properties of nanotubes and composite materials

Mechanical properties of three-terminal nanotube junction determined from computer simulations
E. Belova and L. A. Chernozatonskii ...215

Oscillation of the charged doublewall carbon nanotube
V. Lykah and E. S. Syrkin ...217

Polymer chains behavior in nanotubes: a Monte Carlo study
K. Avramova and A. Milchev ...219

Carbon nanotubes as ceramic matrix reinforcements

Carbon nanotubes as polymer building blocks
F. M. Blighe, M. Ruether, R. Leahy and W. J. Blau223

Synthesis and characterization of epoxy-single-wall carbon nanotube composites
D. Vrbanic, M. Marinsek, S. Pejovnik, A. Anzlovar, P. Umek and D. Mihailovic ...225

Vapour grown carbon nano-fibers – polypropylene composites and their properties
V. Chirila, G. Marginean, W. Brandl and T. Iclanzan227

Part VI. Applications

Nanotechnology: challenges of convergence, heterogeneity and hierarchical integration
A. Vaseashta ..229

Behavior of carbon nanotubes in biological systems
D. G. Kolomiyets ..231

Molecular dynamics of carbon nanotube-polypeptide complexes at the biomembrane-water interface
K. V. Shaitan, Y. V. Tourleigh and D. N. Golik ...233

Thermal conductivity enhancement of nanofluids
A. Cherkasova and J. Shan ...235

Carbon nanotubes as advanced lubricant additives
F. Dassenoy, L. Joly-Pottuz, J. M. Martin and T. Mieno237
Synthesis and characterization of iron nanostructures inside porous zeolites and their applications in water treatment technologies
M. Vaclavikova, M. Matik, S. Jakabsky, S. Hredzak and G. Gallios …….239

Nanostructured carbon growth by an expanding radiofrequency plasma jet
S. I. Vizireanu, B. Mitu, R. Birjega, G. Dinescu and V. Teodorescu …………241

Design and relative stability of multicomponent nanowires
T. Dumitrică, V. Barone, M. Hu and B. I. Yakobson ..243

Modeling of molecular orbital and solid state packing polymer calculations on the bi-polaron nature of conducting sensor poly (p-phenylene)
I. Rabias, P. Dallas and D. Niarchos ...245

Nd:LSB microchip laser as a promising instrument for Raman spectroscopy
V. Parfenov ...247

Subject Index .. 249

Author Index ... 251
PREFACE

It is about 15 years that the carbon nanotubes have been discovered by Sumio Iijima in a transmission electron microscope. Since that time, these long hollow cylindrical carbon molecules have revealed being remarkable nanostructures for several aspects. They are composed of just one element, Carbon, and are easily produced by several techniques. A nanotube can bend easily but still is very robust. The nanotubes can be manipulated and contacted to external electrodes. Their diameter is in the nanometer range, whereas their length may exceed several micrometers, if not several millimeters. In diameter, the nanotubes behave like molecules with quantized energy levels, while in length, they behave like a crystal with a continuous distribution of momenta. Depending on its exact atomic structure, a single-wall nanotube –that is to say a nanotube composed of just one rolled-up graphene sheet– may be either a metal or a semiconductor. The nanotubes can carry a large electric current, they are also good thermal conductors.

It is not surprising, then, that many applications have been proposed for the nanotubes. At the time of writing, one of their most promising applications is their ability to emit electrons when subjected to an external electric field. Carbon nanotubes can do so in normal vacuum conditions with a reasonable voltage threshold, which make them suitable for cold-cathode devices. Nanotubes are also good candidates for the design of composite materials. They can increase the conductivity, either electrical or thermal, of polymer matrices which they are embedded in at a few weight percents, while improving the mechanical resistance of the materials. Most spectacular, but still far from industrialization, is the nanotube-based field-effect transistor. Here, a single-wall semiconducting nanotube, contacted to two electrodes, may block or may transmit an electric current depending on the potential applied to a gate electrode placed at near proximity. Many other applications are foreseen, among which nanoscopic gas sensing in which one property of the nanotube, sensitive to adsorbed molecules, is measured. Gas selectivity may be realized by a suitable functionalization of the nanotubes. Optical and opto-electronic properties of single-wall nanotubes are also promising for infra-red applications.

While the list of potential applications increases every month, the basic properties of intrinsic nanotubes are well documented and relatively well understood. Only relatively, because there remain several important open issues. Many-body effects, although predicted to occur in one-dimensional systems since a long time, are not clearly evidenced. Luttinger-liquid behavior,
for instance, is not fully recognized by experiments on metallic nanotubes. Excitons in semiconducting tubes constitute another topic of recent, sometimes controversial debates. More important, perhaps, the synthesis and growth mechanisms of the carbon nanotubes are not clearly pinned out. It is remarkable that these beautiful molecules can be produced in such many different physical and chemical conditions (electric arc discharge, catalytic chemical vapor deposition, laser ablation ...). Partly due to that, it is still not possible at the time of writing to produce nanotubes with all the same structure in a controllable way. Large-scale, but detailed characterization of the nanotubes, like with any other nanostructures, remains a great experimental challenge that will need to be overcome.

Whether or not nanotubes will have important industrial applications is not the essential point for the time being. What can be given for sure is that the carbon nanotubes have triggered an intense research activity thanks to which nanotechnology is developing so fast. The nanotubes are indeed ideal objects to deal with in this context before other nanostructures, perhaps, will supplement them and will open the way to real technological applications. In this book, many aspects of the nanotubes are either touched or described in details. The book is a snapshot, incomplete perhaps, of the state of the art at the time where the ASI took place, on the shore of the Black Sea.

We gratefully acknowledge the generous support from the NATO Scientific and Environmental Affairs Division and the University of Namur. We thank all authors for preparing high-quality manuscripts.

V. N. Popov

Ph. Lambin

Sofia

Namur

Bulgaria

Belgium

November 2005
ORGANIZING COMMITTEE

Co-Director

Prof. Philippe Lambin
Département de Physique
Facultés Universitaires Notre-Dame de la Paix
Namur, BELGIUM

Co-Director

Prof. Valentin Popov
Faculty of Physics
University of Sofia
Sofia, BULGARIA

Scientific Chairman

Prof. Hans Kuzmany
Universität Wien
Institut für Materialphysik
Wien, AUSTRIA

Scientific Advisor

Prof. Angel Rubio
Dpto. Física de Materiales
Facultad de Químicas U. Pais Vasco
San Sebastian/Donostia, SPAIN

Scientific Advisor

Prof. Minko Balkanski
Université Pierre et Marie Curie
Paris, FRANCE